Smooth Homotopy of Infinite-Dimensional $C^{infty }$-Manifolds

Smooth Homotopy of Infinite-Dimensional $C^{infty }$-Manifolds PDF Author: Hiroshi Kihara
Publisher: American Mathematical Society
ISBN: 1470465426
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
View the abstract.

Smooth Homotopy of Infinite-Dimensional $C^{infty }$-Manifolds

Smooth Homotopy of Infinite-Dimensional $C^{infty }$-Manifolds PDF Author: Hiroshi Kihara
Publisher: American Mathematical Society
ISBN: 1470465426
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
View the abstract.

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry PDF Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Algebraic Geometry over C∞-Rings

Algebraic Geometry over C∞-Rings PDF Author: Dominic Joyce
Publisher: American Mathematical Soc.
ISBN: 1470436450
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
If X is a manifold then the R-algebra C∞(X) of smooth functions c:X→R is a C∞-ring. That is, for each smooth function f:Rn→R there is an n-fold operation Φf:C∞(X)n→C∞(X) acting by Φf:(c1,…,cn)↦f(c1,…,cn), and these operations Φf satisfy many natural identities. Thus, C∞(X) actually has a far richer structure than the obvious R-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by C∞-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are C∞-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on C∞-schemes, and C∞-stacks, in particular Deligne-Mumford C∞-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C∞-rings and C∞ -schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, “derived” versions of manifolds and orbifolds related to Spivak's “derived manifolds”.

Introduction to Smooth Manifolds

Introduction to Smooth Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387217525
Category : Mathematics
Languages : en
Pages : 646

Get Book Here

Book Description
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

Topology of Infinite-Dimensional Manifolds

Topology of Infinite-Dimensional Manifolds PDF Author: Katsuro Sakai
Publisher: Springer Nature
ISBN: 9811575754
Category : Mathematics
Languages : en
Pages : 631

Get Book Here

Book Description
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk’s conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial ∞-manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial ∞-manifold and the Hauptvermutung for them is true.

Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold PDF Author: Steve Zelditch
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Local Algebra

Local Algebra PDF Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
ISBN: 3662042037
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF Author: Joel W. Robbin
Publisher: Springer Nature
ISBN: 3662643405
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis PDF Author: Ieke Moerdijk
Publisher: Springer Science & Business Media
ISBN: 147574143X
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.