Smart Rotor Modeling PDF Download
Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Smart Rotor Modeling PDF full book. Access full book title Smart Rotor Modeling by Leonardo Bergami. Download full books in PDF and EPUB format.
Author: Leonardo Bergami
Publisher: Springer
ISBN: 3319073656
Category : Technology & Engineering
Languages : en
Pages : 161
Get Book Here
Book Description
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors. The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynamics of an air foil section with flap is presented and coupled with a multi-body structural representation. A smart rotor configuration is proposed, where the Adaptive Trailing Edge Flaps extend along the outer 20 % of the blade span. Linear Quadratic and Model Predictive algorithms are formulated to control the flap deflection. The potential of the smart rotor is finally confirmed by simulations in a turbulent wind field. A significant reduction of the fatigue loads on the blades is reported: the flaps, which cover no more than 1.5 % of the blade surface, reduce the fatigue load by 15 %; a combination of flap and individual pitch control allows for fatigue reductions up to 30 %.
Author: Leonardo Bergami
Publisher: Springer
ISBN: 3319073656
Category : Technology & Engineering
Languages : en
Pages : 161
Get Book Here
Book Description
A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors. The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynamics of an air foil section with flap is presented and coupled with a multi-body structural representation. A smart rotor configuration is proposed, where the Adaptive Trailing Edge Flaps extend along the outer 20 % of the blade span. Linear Quadratic and Model Predictive algorithms are formulated to control the flap deflection. The potential of the smart rotor is finally confirmed by simulations in a turbulent wind field. A significant reduction of the fatigue loads on the blades is reported: the flaps, which cover no more than 1.5 % of the blade surface, reduce the fatigue load by 15 %; a combination of flap and individual pitch control allows for fatigue reductions up to 30 %.
Author: Ranjan Ganguli
Publisher: Springer
ISBN: 9783319247663
Category : Technology & Engineering
Languages : en
Pages : 0
Get Book Here
Book Description
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Author: Ranjan Ganguli
Publisher: Springer
ISBN: 3319247689
Category : Technology & Engineering
Languages : en
Pages : 264
Get Book Here
Book Description
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Author: Nesbitt Hagood IV
Publisher: CRC Press
ISBN: 9781566767552
Category : Technology & Engineering
Languages : en
Pages : 822
Get Book Here
Book Description
Author: Inderjit Chopra
Publisher: Cambridge University Press
ISBN: 052186657X
Category : Science
Languages : en
Pages : 925
Get Book Here
Book Description
This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
Author: Naoui, Mohamed
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 357
Get Book Here
Book Description
The increasing demand for cleaner and more intelligent energy solutions poses a challenge that resonates across academic, engineering, and policymaking spheres. The complexity of integrating renewable energy sources, energy storage solutions, and advanced communication technologies demands a comprehensive understanding, rigorous analysis, and innovative control strategies. The academic community, in particular, seeks a guiding light through this intricate maze of evolving energy dynamics. Modeling, Analysis, and Control of Smart Energy Systems is a groundbreaking publication that offers more than theoretical exploration; it is a roadmap equipped with the knowledge and tools required to shape the future of energy systems. From laying conceptual foundations to unraveling real-world case studies, the book seamlessly bridges the gap between theory and application. Its comprehensive coverage of mathematical modeling, dynamic system analysis, intelligent control strategies, and the integration of renewable energy sources positions it as an authoritative reference for researchers, engineers, and policymakers alike.
Author: Olga Arsenyeva
Publisher: Springer Nature
ISBN: 3031201418
Category : Technology & Engineering
Languages : en
Pages : 878
Get Book Here
Book Description
This book offers a comprehensive review of smart technologies and perspectives on their application in urban engineering. It covers a wide range of applications, from transport and energy management to digital manufacturing, smart city, environment, and sustainable development, providing readers with new ideas for future research and collaborations. This book presents select papers from the International Conference on Smart Technologies in Urban Engineering (STUE-2022), held to commemorate the 100th anniversary of the O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine, on June 9–11, 2022. All the contributions offer plenty of valuable information and would be of great benefit to the experience exchange among scientists in urban engineering.
Author: Gordon J. Leishman
Publisher: Cambridge University Press
ISBN: 9780521858601
Category : Science
Languages : en
Pages : 860
Get Book Here
Book Description
Written by an internationally recognized teacher and researcher, this book provides a thorough, modern treatment of the aerodynamic principles of helicopters and other rotating-wing vertical lift aircraft such as tilt rotors and autogiros. The text begins with a unique technical history of helicopter flight, and then covers basic methods of rotor aerodynamic analysis, and related issues associated with the performance of the helicopter and its aerodynamic design. It goes on to cover more advanced topics in helicopter aerodynamics, including airfoil flows, unsteady aerodynamics, dynamic stall, and rotor wakes, and rotor-airframe aerodynamic interactions, with final chapters on autogiros and advanced methods of helicopter aerodynamic analysis. Extensively illustrated throughout, each chapter includes a set of homework problems. Advanced undergraduate and graduate students, practising engineers, and researchers will welcome this thoroughly revised and updated text on rotating-wing aerodynamics.
Author: Jyoti K. Sinha
Publisher: Springer
ISBN: 3319099183
Category : Technology & Engineering
Languages : en
Pages : 1110
Get Book Here
Book Description
The VETOMAC-X Conference covered a holistic plethora of relevant topics in vibration and engineering technology including condition monitoring, machinery and structural dynamics, rotor dynamics, experimental techniques, finite element model updating, industrial case studies, vibration control and energy harvesting, and signal processing. These proceedings contain not only all of the nearly one-hundred peer-reviewed presentations from authors representing more than twenty countries, but also include six invited lectures from renowned experts: Professor K. Gupta, Mr W. Hahn, Professor A.W. Lees, Professor John Mottershead, Professor J.S. Rao, and Dr P. Russhard. This work is of interest to researchers and practitioners alike, and is an essential book for most of libraries of higher academic institutes.
Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3030817059
Category : Technology & Engineering
Languages : en
Pages : 475
Get Book Here
Book Description
The book is devoted to the 70th birthday of Prof. Sergey M. Aizikovich, which will celebrated on August 2nd 2021. His scientific interests are related to the following topics: Mechanics of contact interactions, Functionally graded materials, Mechanics of fracture, Integral equations of mathematical physics, Inverse problems of the theory of elasticity, and Applications of elasticity to biological and medical problems of mechanics of materials. The papers, collected in the book, are contributions of authors from 10 countries.