Author: Ronald W. Crites
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Nature
Languages : en
Pages : 1112
Book Description
Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.
Small & Decentralized Wastewater Management Systems
Author: Ronald W. Crites
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Nature
Languages : en
Pages : 1112
Book Description
Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Nature
Languages : en
Pages : 1112
Book Description
Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.
Water Conservation, Reuse, and Recycling
Author: Academy of Sciences of the Islamic Republic of Iran
Publisher: National Academies Press
ISBN: 0309181194
Category : Science
Languages : en
Pages : 292
Book Description
In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.
Publisher: National Academies Press
ISBN: 0309181194
Category : Science
Languages : en
Pages : 292
Book Description
In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.
Handbook for Managing Onsite and Clustered (decentralized) Wastewater Treatment Systems
Author:
Publisher: DIANE Publishing
ISBN: 1428904581
Category : Sewage
Languages : en
Pages : 66
Book Description
Publisher: DIANE Publishing
ISBN: 1428904581
Category : Sewage
Languages : en
Pages : 66
Book Description
Onsite Wastewater Treatment Systems Manual
Author:
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 378
Book Description
"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 378
Book Description
"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.
Ecological Engineering
Author: Patrick Kangas
Publisher: CRC Press
ISBN: 1135464189
Category : Nature
Languages : en
Pages : 702
Book Description
Less expensive and more environmentally appropriate than conventional engineering approaches, constructed ecosystems are a promising technology for environmental problem solving. Undergraduates, graduate students, and working professionals need an introductory text that details the biology and ecology of this rapidly developing discipline, known as
Publisher: CRC Press
ISBN: 1135464189
Category : Nature
Languages : en
Pages : 702
Book Description
Less expensive and more environmentally appropriate than conventional engineering approaches, constructed ecosystems are a promising technology for environmental problem solving. Undergraduates, graduate students, and working professionals need an introductory text that details the biology and ecology of this rapidly developing discipline, known as
Efficient Management of Wastewater
Author: Ismail Al Baz
Publisher: Springer Science & Business Media
ISBN: 3540744924
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Water reuse management is one of the challenges all water scarce countries have to deal with in the coming decades. The present book highlights non-conventional solutions within the field of wastewater treatment and reuse predominantly for professionals and decision makers. It focuses on technologies which are reliable, sustainable, low cost and suitable for rural and sub urban areas. In addition, particularly innovative on-site concepts are presented.
Publisher: Springer Science & Business Media
ISBN: 3540744924
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
Water reuse management is one of the challenges all water scarce countries have to deal with in the coming decades. The present book highlights non-conventional solutions within the field of wastewater treatment and reuse predominantly for professionals and decision makers. It focuses on technologies which are reliable, sustainable, low cost and suitable for rural and sub urban areas. In addition, particularly innovative on-site concepts are presented.
Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries
Author: Bernd Gutterer
Publisher: Wedc
ISBN: 9781843801283
Category : Social Science
Languages : en
Pages : 367
Book Description
In many countries, a rapidly upcoming demand for decentralised wastewater treatment systems (DEWATS) and a demand for efficient community-based sanitation (CBS) can be observed. DEWATS is designed to be an element of a comprehensive strategy for city-wide planning and sustainable infrastructure development. In this book, not only are the technical requirements for the efficient treatment of wastewater at a given location explained, but the specific socio-economic conditions and steps for community action planning are also taken into consideration.
Publisher: Wedc
ISBN: 9781843801283
Category : Social Science
Languages : en
Pages : 367
Book Description
In many countries, a rapidly upcoming demand for decentralised wastewater treatment systems (DEWATS) and a demand for efficient community-based sanitation (CBS) can be observed. DEWATS is designed to be an element of a comprehensive strategy for city-wide planning and sustainable infrastructure development. In this book, not only are the technical requirements for the efficient treatment of wastewater at a given location explained, but the specific socio-economic conditions and steps for community action planning are also taken into consideration.
Life Cycle Assessment of Wastewater Treatment
Author: Mu. Naushad
Publisher: CRC Press
ISBN: 1351678264
Category : Science
Languages : en
Pages : 386
Book Description
Life Cycle Assessment of Wastewater Treatment addresses in detail the required in-depth life cycle assessment of wastewater treatment. This is to meet the special demands placed upon wastewater treatment processes, due to both the limited quantity and often low quality of water supplies. Wastewater management clearly plays a central role in achieving future water security in a world where water stress is expected to increase. Life cycle assessment (LCA) can be used as a tool to evaluate the environmental impacts associated with wastewater treatment and potential improvement options. This unique volume will focus on the analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. Key Features: Focuses on the analysis of wastewater treatment plants using a life cycle assessment (LCA) approach Discusses unconventional water sources such as recycled wastewater, brackish groundwater and desalinated seawater Explains life cycle assessment in detail, which has become one of the reference methods used to assess the environmental performance of processes over their complete life cycle, from raw material extraction, infrastructure construction and operation to final dismantling Explores a technique (LCA) that is becoming increasingly popular amongst researchers in the water treatment field nowadays because of its holistic approach Based on the real life experiences, the subject of wastewater is presented in simple terms and made accessible to anyone willing to learn and experiment
Publisher: CRC Press
ISBN: 1351678264
Category : Science
Languages : en
Pages : 386
Book Description
Life Cycle Assessment of Wastewater Treatment addresses in detail the required in-depth life cycle assessment of wastewater treatment. This is to meet the special demands placed upon wastewater treatment processes, due to both the limited quantity and often low quality of water supplies. Wastewater management clearly plays a central role in achieving future water security in a world where water stress is expected to increase. Life cycle assessment (LCA) can be used as a tool to evaluate the environmental impacts associated with wastewater treatment and potential improvement options. This unique volume will focus on the analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. Key Features: Focuses on the analysis of wastewater treatment plants using a life cycle assessment (LCA) approach Discusses unconventional water sources such as recycled wastewater, brackish groundwater and desalinated seawater Explains life cycle assessment in detail, which has become one of the reference methods used to assess the environmental performance of processes over their complete life cycle, from raw material extraction, infrastructure construction and operation to final dismantling Explores a technique (LCA) that is becoming increasingly popular amongst researchers in the water treatment field nowadays because of its holistic approach Based on the real life experiences, the subject of wastewater is presented in simple terms and made accessible to anyone willing to learn and experiment
Source Separation and Decentralization for Wastewater Management
Author: Tove A. Larsen
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502
Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502
Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Decentralised Sanitation and Reuse
Author: Piet Lens
Publisher: IWA Publishing
ISBN: 1900222477
Category : Science
Languages : en
Pages : 652
Book Description
Adopting a multi-disciplinary approach, Decentralised Sanitation and Reuse places public sanitation in a global context and provides a definitive discussion of current state-of-the-art sanitation technologies. It shows how these technologies can be implemented to integrate domestic waste and wastewater treatment in order to maximize resource recycling in domestic practice. Decentralised Sanitation and Reuse presents technical solutions for on-site collection and transport of concentrated waste streams, and focuses on the compromise between reliability and minimal water wastage. A whole range of available sustainable technologies, both low and high-tech, to treat concentrated (black water) and diluted (grey water) streams are addressed in detail from the fundamental scientific and engineering points of view. Sociological, economic and, particularly, environmental and public health aspects are essential issues within this book. The necessity of new infrastructure implementation and the resulting challenges for a good number of economic branches are illustrated with examples from architecture and town planning. Decentralised Sanitation and Reuse will be an invaluable resource for a wide academic and professional readership active in the fields of environmental protection and public sanitation. Contents The DESAR concept for environmental protection Waste and wastewater characteristics and its collection on the site Technological aspects of DESAR Environmental and public health aspects of DESAR Sociological and economic aspects of DESAR Architectural and urbanistic aspects of DESAR
Publisher: IWA Publishing
ISBN: 1900222477
Category : Science
Languages : en
Pages : 652
Book Description
Adopting a multi-disciplinary approach, Decentralised Sanitation and Reuse places public sanitation in a global context and provides a definitive discussion of current state-of-the-art sanitation technologies. It shows how these technologies can be implemented to integrate domestic waste and wastewater treatment in order to maximize resource recycling in domestic practice. Decentralised Sanitation and Reuse presents technical solutions for on-site collection and transport of concentrated waste streams, and focuses on the compromise between reliability and minimal water wastage. A whole range of available sustainable technologies, both low and high-tech, to treat concentrated (black water) and diluted (grey water) streams are addressed in detail from the fundamental scientific and engineering points of view. Sociological, economic and, particularly, environmental and public health aspects are essential issues within this book. The necessity of new infrastructure implementation and the resulting challenges for a good number of economic branches are illustrated with examples from architecture and town planning. Decentralised Sanitation and Reuse will be an invaluable resource for a wide academic and professional readership active in the fields of environmental protection and public sanitation. Contents The DESAR concept for environmental protection Waste and wastewater characteristics and its collection on the site Technological aspects of DESAR Environmental and public health aspects of DESAR Sociological and economic aspects of DESAR Architectural and urbanistic aspects of DESAR