Singular Semi-Riemannian Geometry

Singular Semi-Riemannian Geometry PDF Author: D.N. Kupeli
Publisher: Springer Science & Business Media
ISBN: 9401587612
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.

Singular Semi-Riemannian Geometry

Singular Semi-Riemannian Geometry PDF Author: D.N. Kupeli
Publisher: Springer Science & Business Media
ISBN: 9401587612
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.

Osserman Manifolds in Semi-Riemannian Geometry

Osserman Manifolds in Semi-Riemannian Geometry PDF Author: Eduardo Garcia-Rio
Publisher: Springer
ISBN: 3540456295
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
The subject of this book is Osserman semi-Riemannian manifolds, and in particular, the Osserman conjecture in semi-Riemannian geometry. The treatment is pitched at the intermediate graduate level and requires some intermediate knowledge of differential geometry. The notation is mostly coordinate-free and the terminology is that of modern differential geometry. Known results toward the complete proof of Riemannian Osserman conjecture are given and the Osserman conjecture in Lorentzian geometry is proved completely. Counterexamples to the Osserman conjuncture in generic semi-Riemannian signature are provided and properties of semi-Riemannian Osserman manifolds are investigated.

Null Curves and Hypersurfaces of Semi-Riemannian Manifolds

Null Curves and Hypersurfaces of Semi-Riemannian Manifolds PDF Author: Krishan L. Duggal
Publisher: World Scientific
ISBN: 981270647X
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
This is a first textbook that is entirely focused on the up-to-date developments of null curves with their applications to science and engineering. It fills an important gap in a second-level course in differential geometry, as well as being essential for a core undergraduate course on Riemannian curves and surfaces. The sequence of chapters is arranged to provide in-depth understanding of a chapter and stimulate further interest in the next. The book comprises a large variety of solved examples and rigorous exercises that range from elementary to higher levels. This unique volume is self-contained and unified in presenting: ? A systematic account of all possible null curves, their Frenet equations, unique null Cartan curves in Lorentzian manifolds and their practical problems in science and engineering.? The geometric and physical significance of null geodesics, mechanical systems involving curvature of null curves, simple variation problems and the interrelation of null curves with hypersurfaces.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry PDF Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Symmetries of Spacetimes and Riemannian Manifolds

Symmetries of Spacetimes and Riemannian Manifolds PDF Author: Krishan L. Duggal
Publisher: Springer Science & Business Media
ISBN: 1461553156
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.

Geometry of Lie Groups

Geometry of Lie Groups PDF Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 147575325X
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.

Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications

Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications PDF Author: Krishan L. Duggal
Publisher: Springer Science & Business Media
ISBN: 9401720894
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.

Differential Geometry of Lightlike Submanifolds

Differential Geometry of Lightlike Submanifolds PDF Author: Krishan L. Duggal
Publisher: Springer Science & Business Media
ISBN: 3034602510
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.

Differentiable and Complex Dynamics of Several Variables

Differentiable and Complex Dynamics of Several Variables PDF Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 9401592993
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.

2nd Karl Schwarzschild Meeting on Gravitational Physics

2nd Karl Schwarzschild Meeting on Gravitational Physics PDF Author: Piero Nicolini
Publisher: Springer
ISBN: 3319942565
Category : Science
Languages : en
Pages : 200

Get Book Here

Book Description
This book presents the proceedings of the 2nd Karl Schwarzschild Meeting on Gravitational Physics, focused on the general theme of black holes, gravity and information.Specialists in the field of black hole physics and rising young researchers present the latest findings on the broad topic of black holes, gravity, and information, highlighting its applications to astrophysics, cosmology, particle physics, and strongly correlated systems.