Singular Points of Plane Curves

Singular Points of Plane Curves PDF Author: C. T. C. Wall
Publisher: Cambridge University Press
ISBN: 9780521547741
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
Publisher Description

Singular Points of Plane Curves

Singular Points of Plane Curves PDF Author: C. T. C. Wall
Publisher: Cambridge University Press
ISBN: 9780521547741
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
Publisher Description

Singularities of Plane Curves

Singularities of Plane Curves PDF Author: Eduardo Casas-Alvero
Publisher: Cambridge University Press
ISBN: 0521789591
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
Comprehensive and self-contained exposition of singularities of plane curves, including new, previously unpublished results.

Introduction to Plane Algebraic Curves

Introduction to Plane Algebraic Curves PDF Author: Ernst Kunz
Publisher: Springer Science & Business Media
ISBN: 0817644431
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
* Employs proven conception of teaching topics in commutative algebra through a focus on their applications to algebraic geometry, a significant departure from other works on plane algebraic curves in which the topological-analytic aspects are stressed *Requires only a basic knowledge of algebra, with all necessary algebraic facts collected into several appendices * Studies algebraic curves over an algebraically closed field K and those of prime characteristic, which can be applied to coding theory and cryptography * Covers filtered algebras, the associated graded rings and Rees rings to deduce basic facts about intersection theory of plane curves, applications of which are standard tools of computer algebra * Examples, exercises, figures and suggestions for further study round out this fairly self-contained textbook

Resolution of Curve and Surface Singularities in Characteristic Zero

Resolution of Curve and Surface Singularities in Characteristic Zero PDF Author: K. Kiyek
Publisher: Springer Science & Business Media
ISBN: 1402020295
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.

A Treatise on Algebraic Plane Curves

A Treatise on Algebraic Plane Curves PDF Author: Julian Lowell Coolidge
Publisher: Courier Corporation
ISBN: 9780486495767
Category : Mathematics
Languages : en
Pages : 554

Get Book Here

Book Description
A thorough introduction to the theory of algebraic plane curves and their relations to various fields of geometry and analysis. Almost entirely confined to the properties of the general curve, and chiefly employs algebraic procedure. Geometric methods are much employed, however, especially those involving the projective geometry of hyperspace. 1931 edition. 17 illustrations.

A Guide to Plane Algebraic Curves

A Guide to Plane Algebraic Curves PDF Author: Keith Kendig
Publisher: MAA
ISBN: 0883853531
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.

Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field PDF Author: J. W. P. Hirschfeld
Publisher: Princeton University Press
ISBN: 1400847419
Category : Mathematics
Languages : en
Pages : 717

Get Book Here

Book Description
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

An Invitation to Quantum Cohomology

An Invitation to Quantum Cohomology PDF Author: Joachim Kock
Publisher: Springer Science & Business Media
ISBN: 0817644954
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces PDF Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Differential Geometry Of Curves And Surfaces With Singularities

Differential Geometry Of Curves And Surfaces With Singularities PDF Author: Masaaki Umehara
Publisher: World Scientific
ISBN: 9811237158
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
This book provides a unique and highly accessible approach to singularity theory from the perspective of differential geometry of curves and surfaces. It is written by three leading experts on the interplay between two important fields — singularity theory and differential geometry.The book introduces singularities and their recognition theorems, and describes their applications to geometry and topology, restricting the objects of attention to singularities of plane curves and surfaces in the Euclidean 3-space. In particular, by presenting the singular curvature, which originated through research by the authors, the Gauss-Bonnet theorem for surfaces is generalized to those with singularities. The Gauss-Bonnet theorem is intrinsic in nature, that is, it is a theorem not only for surfaces but also for 2-dimensional Riemannian manifolds. The book also elucidates the notion of Riemannian manifolds with singularities.These topics, as well as elementary descriptions of proofs of the recognition theorems, cannot be found in other books. Explicit examples and models are provided in abundance, along with insightful explanations of the underlying theory as well. Numerous figures and exercise problems are given, becoming strong aids in developing an understanding of the material.Readers will gain from this text a unique introduction to the singularities of curves and surfaces from the viewpoint of differential geometry, and it will be a useful guide for students and researchers interested in this subject.