Single-molecule Measurements of Transcript Elongation and Termination by RNA Polymerase

Single-molecule Measurements of Transcript Elongation and Termination by RNA Polymerase PDF Author: Matthew Herbert Larson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transcription by RNAP is highly regulated in both prokaryotic and eukaryotic cells, and the ability of the cell to differentiate and respond to its environment is largely due to this regulation. During elongation, for example, RNAP is known to momentarily halt in response to certain cellular signals, and this pause state has been implicated in the regulation of gene expression in both prokaryotic and eukaryotic organisms. In addition, once RNAP reaches the end of a gene, it must reliably terminate and release the newly-transcribed RNA, providing another potential point of regulation within different cell types. Both of these steps are crucial to ensure proper gene expression. In this dissertation, I focus on transcription elongation by both prokaryotic and eukaryotic RNA polymerases, as well as their regulation through pausing and termination. To probe the role of RNA hairpins in transcriptional pausing, a novel single-molecule "RNA-pulling" assay was used to block the formation of secondary structure in the nascent transcript. Force along the RNA did not significantly affect transcription elongation rates, pause frequencies, or pause lifetimes, indicating that short "ubiquitous" pauses are not a consequence of RNA hairpins. Force-based single-molecule techniques were also used to study the mechanism and energetics of transcription termination in bacteria. The data suggest two separate mechanisms for termination: one that involves hypertranslocation of RNAP along the DNA, and one that involves shearing of the RNA:DNA hybrid within the enzyme. In addition, a quantitative energetic model is presented that successfully predicts the termination efficiency of both wild-type and mutant terminators. Finally, the implementation of a novel optical-trapping assay capable of directly observing transcription by eukaryotic RNA polymerase II (RNAPII) molecules is described. This approach was used to probe the RNAPII nucleotide-addition cycle, as well as the role of the trigger loop (a conserved subdomain) in elongation. The results are consistent with a Brownian ratchet model of elongation which incorporates a secondary NTP binding site, and the trigger loop was found to modulate translocation, NTP binding, and catalysis, as well as substrate selection and mismatch recognition by RNAPII.

Single-molecule Measurements of Transcript Elongation and Termination by RNA Polymerase

Single-molecule Measurements of Transcript Elongation and Termination by RNA Polymerase PDF Author: Matthew Herbert Larson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transcription by RNAP is highly regulated in both prokaryotic and eukaryotic cells, and the ability of the cell to differentiate and respond to its environment is largely due to this regulation. During elongation, for example, RNAP is known to momentarily halt in response to certain cellular signals, and this pause state has been implicated in the regulation of gene expression in both prokaryotic and eukaryotic organisms. In addition, once RNAP reaches the end of a gene, it must reliably terminate and release the newly-transcribed RNA, providing another potential point of regulation within different cell types. Both of these steps are crucial to ensure proper gene expression. In this dissertation, I focus on transcription elongation by both prokaryotic and eukaryotic RNA polymerases, as well as their regulation through pausing and termination. To probe the role of RNA hairpins in transcriptional pausing, a novel single-molecule "RNA-pulling" assay was used to block the formation of secondary structure in the nascent transcript. Force along the RNA did not significantly affect transcription elongation rates, pause frequencies, or pause lifetimes, indicating that short "ubiquitous" pauses are not a consequence of RNA hairpins. Force-based single-molecule techniques were also used to study the mechanism and energetics of transcription termination in bacteria. The data suggest two separate mechanisms for termination: one that involves hypertranslocation of RNAP along the DNA, and one that involves shearing of the RNA:DNA hybrid within the enzyme. In addition, a quantitative energetic model is presented that successfully predicts the termination efficiency of both wild-type and mutant terminators. Finally, the implementation of a novel optical-trapping assay capable of directly observing transcription by eukaryotic RNA polymerase II (RNAPII) molecules is described. This approach was used to probe the RNAPII nucleotide-addition cycle, as well as the role of the trigger loop (a conserved subdomain) in elongation. The results are consistent with a Brownian ratchet model of elongation which incorporates a secondary NTP binding site, and the trigger loop was found to modulate translocation, NTP binding, and catalysis, as well as substrate selection and mismatch recognition by RNAPII.

High-resolution, Single-molecule Measurements of Transcription and RNA Folding

High-resolution, Single-molecule Measurements of Transcription and RNA Folding PDF Author: William James Greenleaf
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Get Book Here

Book Description


The Mechanics of Transcription by RNA Polymerase

The Mechanics of Transcription by RNA Polymerase PDF Author: Elio Aaron Abbondanzieri
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description


RNA as Molecular Motors 2E

RNA as Molecular Motors 2E PDF Author: Robert Landick
Publisher: Royal Society of Chemistry
ISBN: 1788013654
Category : Science
Languages : en
Pages : 295

Get Book Here

Book Description
This book, written by expert scientists in the field, analyses how these diverse fields of research interact on a specific example - RNA polymerase.

Single-molecule Studies on Transcriptional Elongation in Prokaryotes and Eukaryotes

Single-molecule Studies on Transcriptional Elongation in Prokaryotes and Eukaryotes PDF Author: Jing Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transcription, the process of copying genetic information stored in DNA into RNA, is fundamental to life. It is carried out by an extraordinary nano-machine called RNA polymerase (RNAP). Transcriptional elongation, during which RNAP moves along the DNA, adding one nucleotide at a time to the RNA transcript, is highly dynamic and regulated. The motion of RNAP is discontinuous and interrupted by pauses that play an essential role in gene regulation. Fundamental questions regarding the mechanisms of elongation and its modulation by transcription factors, however, remain unclear. In this dissertation, I focus on using high-resolution, optical trapping techniques to study the mechanisms of transcriptional elongation by both prokaryotic and eukaryotic RNA polymerases at the single-molecule level. First, I describe the studies on how the motion of single E.coli RNAP molecules is modulated by two universally conserved, essential transcription factors (NusA and NusG). From individual transcriptional elongation records, the rates of entering pause states, the pause state lifetimes, and the pause-free elongation speeds can all be extracted. By studying the effects of NusA (and NusG) on these kinetic rates as a function of the applied load, we were able to develop a quantitative kinetic scheme for elongation and pausing. This model not only explains the functions of NusA/NusG, but also provides insight into the mechanism of transcriptional pausing, which had previously been controversial. Second, a novel optical-trapping assay capable of directly probing elongation by individual eukaryotic RNA polymerase II (RNAPII) molecules will be described. We find that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, not only affects each of the three main phases of elongation, namely: substrate binding, translocation, and catalysis; but also plays a critical role in controlling the fidelity of transcription. Our data also support a Brownian ratchet model for elongation which incorporates a secondary nucleotide binding site.

Single-molecule Studies of Different Steps in Human RNA Polymerase II and Bacterial RNA Polymerase Transcription

Single-molecule Studies of Different Steps in Human RNA Polymerase II and Bacterial RNA Polymerase Transcription PDF Author: Yazan Khalaf Alhadid
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description
Transcription of genomic DNA of all organisms is carried out by members of the multi-subunit RNA polymerase family. Regulation of RNA polymerase localization and activity underlies cellular homeostasis, division, and response to environmental cues. The catalytic mechanism, overall architecture, and many sequence and structural features of bacterial RNA polymerase are conserved in its Archaeal and Eukaryotic counterparts. The human RNA polymerase II (Pol II) is responsible for transcription of all protein-coding and many non-coding genes. The majority of current knowledge on RNA polymerases and their mechanism at different steps in transcription derives from extensive work done using classical biochemical, genetic and structural biology methods. However, the use of single-molecule approaches addressed crucial questions on the function and mechanism of RNA polymerases during transcription, which were not possible to answer with ensemble-based approaches due to averaging effects. A useful fluorescence-based single-molecule technique to measure distances on the molecular scale and monitor dynamics is F rster resonance energy transfer (FRET). Here, I report on the development of diffusion-based single-molecule FRET (smFRET) methods to investigate different steps in transcription by the in vitro reconstituted human Pol II system. Using an assay that monitors the FRET changes between fluorescent dyes in the unwound region of promoter DNA (transcription bubble), I demonstrated the effect of certain components of the reconstituted system on the relative size of the transcription bubble. I also detail the optimizations done to enhance the affinity of single-stranded DNA (ssDNA) FRET probes to complementary target sequences. These ssDNA FRET probes were used to investigate the effect of certain components of the reconstituted system on Pol II activity by measuring the relative levels of RNA product. In addition to studies on the Pol II system, I report on the effect of the 5'-group of nascent RNA on the stability of the Escherichia coli RNA polymerase (RNAP) transcription bubble. I show how the presence of a 5'-monophosphate appears to destabilize the open bubble while a 5'-hydroxyl has no effect. Finally, I describe the work done on a project I took part in that identified a previously uncharacterized RNAP paused complex in initiation. We demonstrate that RNAP complexes undergoing initial transcription can enter the inactive paused state by backtracking. I also demonstrate how the presence of a 5'-triphosphate rapidly enhances entrance of RNAP complexes undergoing initial transcription into an inactive paused complex.

Single Molecule Fluorescence Studies of the RNA Polymerase II Elongation Complex

Single Molecule Fluorescence Studies of the RNA Polymerase II Elongation Complex PDF Author: Joanna Andrecka
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Get Book Here

Book Description


Single-molecule Study of Transcription by RNA Polymerase I

Single-molecule Study of Transcription by RNA Polymerase I PDF Author: Ana Lisica
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Get Book Here

Book Description


Single Molecule Study of RNA Polymerase

Single Molecule Study of RNA Polymerase PDF Author: Keir Cajal Neuman
Publisher:
ISBN:
Category :
Languages : en
Pages : 212

Get Book Here

Book Description


Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description