Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs ; Final Report

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs ; Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 171

Get Book Here

Book Description
A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs ; Final Report

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs ; Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 171

Get Book Here

Book Description
A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Naturally Fractured Reservoirs. Annual Report

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Naturally Fractured Reservoirs. Annual Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Naturally Fractured Reservoirs

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Naturally Fractured Reservoirs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The study has two principal objectives: (1) To evaluate the effects of fracture closure on the recovery of oil and gas reserves from naturally fractured petroleum or natural gas reservoirs. (2) To evaluate procedures for improving the recovery of these reserves using innovative fluid injection techniques to maintain reservoir pressure and mitigate the impact of fracture closure. The total scope of the study has been subdivided into three main tasks: (1) Baseline studies (non-pressure sensitive fractures); (2)studies with pressure sensitive fractures; and (3) innovative approaches for improving oil recovery.

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs

Simulation Studies to Evaluate the Effect of Fracture Closure on the Performance of Fractured Reservoirs PDF Author: K & A Energy Consultants
Publisher:
ISBN:
Category :
Languages : en
Pages : 145

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 544

Get Book Here

Book Description


List of BPO Publications

List of BPO Publications PDF Author: Bartlesville Project Office
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 24

Get Book Here

Book Description


Geologic Analysis of Naturally Fractured Reservoirs

Geologic Analysis of Naturally Fractured Reservoirs PDF Author: Ronald Nelson
Publisher: Elsevier
ISBN: 0080507298
Category : Technology & Engineering
Languages : en
Pages : 353

Get Book Here

Book Description
Geologists, engineers, and petrophysicists concerned with hydrocarbon production from naturally fractured reservoirs will find this book a valuable tool for obtaining pertinent rock data to evaluate reserves and optimize well location and performance. Nelson emphasizes geological, petrophysical, and rock mechanics to complement other studies of the subject that use well logging and classical engineering approaches. This well organized, updated edition contains a wealth of field and laboratory data, case histories, and practical advice. - A great how-to-guide for anyone working with fractured or highly anisotropic reservoirs - Provides real-life illustrations through case histories and field and laboratory data

Petroleum Abstracts

Petroleum Abstracts PDF Author:
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 464

Get Book Here

Book Description


Simulation Study to Investigate the Effect of Natural Fractures on the Performance of Surfactant-polymer Flood in Carbonate Reservoirs

Simulation Study to Investigate the Effect of Natural Fractures on the Performance of Surfactant-polymer Flood in Carbonate Reservoirs PDF Author: Nawaf Ibrahim A. Sayedakram
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis presents a comprehensive simulation study on the impact of natural fractures on the performance of surfactant polymer flood in a field scale surfactant-polymer flood. The simulation model utilized for the study is a dual porosity dual permeability model representing 1/8 of a 20-acre 5-spot pattern. The model parameters studied include wettability alteration, IFT changes and mobility reduction effect. The results of this study clearly indicate the importance of reservoir description and fracture modeling for a successful surfactant-polymer flood. Naturally fractured carbonate reservoirs are usually characterized by mixed wettability and low matrix permeability which leads to low oil recovery and high remaining oil saturation. Enhanced oil recovery methods such as surfactant-polymer flood (SPF) enhance the recovery by increasing the spontaneous imbibitions either by lowering the interfacial tension or altering the wettability. However, one of the main reasons for failed surfactant-polymer floods is under-estimating the importance of the reservoir especially the description of natural fractures and their effect on recovery. Sensitivity runs were made to compare oil recovery capillary force, buoyancy force and viscous force. The simulation study indicates that critical water saturation should be reached before the start of surfactant-polymer flood to maximize oil recovery and utilize the capillary force. Also, when a surfactant alters the rock wettability, an optimum IFT should be identified for faster and higher imbibitions. The study shows that a contrast in permeability between that of the fracture and that of the matrix will result in a slightly lower oil recovery. Having the fracture perpendicular to the injector producer will result in a higher areal sweep and lower residual oil. A sensitivity study on the effect of the size of surfactant polymer slug was not conclusive. Maximum adsorption capacity was reached which was one of the causes of low imbibitions rate. Following the surfactant-polymer with water flood was able to reverse the adsorption and restore some of the movable oil. The results show that if the enhanced fluid that alter the wettability, imbibed in the matrix, injecting high IFT brine will increase the rate of imbibition. The study calls for further investigation of this phenomenon through research using a scaled laboratory model to verify the simulation results.

Applied Concepts in Fractured Reservoirs

Applied Concepts in Fractured Reservoirs PDF Author: John C. Lorenz
Publisher: John Wiley & Sons
ISBN: 1119055865
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
A much-needed, precise and practical treatment of a key topic in the energy industry and beyond, Applied Concepts in Fractured Reservoirs is an invaluable reference for those in both industry and academia Authored by renowned experts in the field, this book covers the understanding, evaluation, and effects of fractures in reservoirs. It offers a comprehensive yet practical discussion and description of natural fractures, their origins, characteristics, and effects on hydrocarbon reservoirs. It starts by introducing the reader to basic definitions and classifications of fractures and fractured reservoirs. It then provides an outline for fractured-reservoir characterization and analysis, and goes on to introduce the way fractures impact operational activities. Well organized and clearly illustrated throughout, Applied Concepts in Fractured Reservoirs starts with a section on understanding natural fractures. It looks at the different types, their dimensions, and the mechanics of fracturing rock in extension and shear. The next section provides information on measuring and analyzing fractures in reservoirs. It covers: logging core for fractures; taking, measuring, and analyzing fracture data; new core vs. archived core; CT scans; comparing fracture data from outcrops, core, and logs; and more. The last part examines the effects of natural fractures on reservoirs, including: the permeability behavior of individual fractures and fracture systems; fracture volumetrics; effects of fractures on drilling and coring; and the interaction between natural and hydraulic fractures. Teaches readers to understand and evaluate fractures Compiles and synthesizes various concepts and descriptions scattered in literature and synthesizes them with unpublished oil-field observations and data, along with the authors’ own experience Bridges some of the gaps between reservoir engineers and geologists Provides an invaluable reference for geologists and engineers who need to understand naturally fractured reservoirs in order to efficiently extract hydrocarbons Illustrated in full color throughout Companion volume to the Atlas of Natural and Induced Fractures in Core