Simplified Micromechanical Models for Analysis of Interface Debonding in a Fibrous Composite

Simplified Micromechanical Models for Analysis of Interface Debonding in a Fibrous Composite PDF Author: Jia-Yuarn Guo
Publisher:
ISBN:
Category :
Languages : en
Pages : 99

Get Book Here

Book Description
The objective of this study is to develop simplified micromechanical models to analyze the interface debonding between fiber and the matrix materials. Both analytical and simplified finite element models are used to predict the effective transverse elastic modules of fibrous composites with a partial interface crack based on the material properties of their constituents. The simplified finite element model uses springs in the connecting nodes between the fiber and matrix. A detailed finite element analysis, which is programmed using the MATLAB engineering software is performed to check the accuracy of the simplified models. The simplified models yield accurate effective transverse elastic modulii of various composites with partial interface cracks when compared to the results obtained from detailed finite element analyses.

Simplified Micromechanical Models for Analysis of Interface Debonding in a Fibrous Composite

Simplified Micromechanical Models for Analysis of Interface Debonding in a Fibrous Composite PDF Author: Jia-Yuarn Guo
Publisher:
ISBN:
Category :
Languages : en
Pages : 99

Get Book Here

Book Description
The objective of this study is to develop simplified micromechanical models to analyze the interface debonding between fiber and the matrix materials. Both analytical and simplified finite element models are used to predict the effective transverse elastic modules of fibrous composites with a partial interface crack based on the material properties of their constituents. The simplified finite element model uses springs in the connecting nodes between the fiber and matrix. A detailed finite element analysis, which is programmed using the MATLAB engineering software is performed to check the accuracy of the simplified models. The simplified models yield accurate effective transverse elastic modulii of various composites with partial interface cracks when compared to the results obtained from detailed finite element analyses.

A Summary of Research 1995

A Summary of Research 1995 PDF Author: United States. Naval Postgraduate School, Monterey, CA.
Publisher:
ISBN:
Category : Military research
Languages : en
Pages : 588

Get Book Here

Book Description


Engineered Interfaces in Fiber Reinforced Composites

Engineered Interfaces in Fiber Reinforced Composites PDF Author: Jang-Kyo Kim
Publisher: Elsevier
ISBN: 0080530974
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume.The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces.The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Micromechanics of Fiber-Matrix Interface and Fracture of Advanced Composites with Engineered Interfaces

Micromechanics of Fiber-Matrix Interface and Fracture of Advanced Composites with Engineered Interfaces PDF Author: J-K Kim
Publisher:
ISBN:
Category : Engineered interfaces
Languages : en
Pages : 15

Get Book Here

Book Description
An experimental method is presented to achieve high strength and high fracture toughness of polymer matrix composites by means of an organic interlayer between fiber and matrix. Extensive mechanical tests and chemical/morphological analyses are performed with a special emphasis being placed on the fiber-matrix interface to characterize the interfacial bonding and the corresponding failure mechanisms taking place in the composite during fracture. To support the observed experimental results, also presented is a parametric theoretical study based on thermo-mechanics and finite element analyses of the single fiber cylindrical composite model whereby important roles of the interlayer are evaluated in controlling the stress transfer, debonding process and the generation of thermal residual stresses. In light of the foregoing study, three concepts of engineered interface are proposed and their practical implications discussed. They include weak interface-bond layer, microductile/compliant layer and compensating layer.

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials PDF Author: M. W. Hyer
Publisher: DEStech Publications, Inc
ISBN: 193207886X
Category : Technology & Engineering
Languages : en
Pages : 718

Get Book Here

Book Description
Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.

Titanium Matrix Composites

Titanium Matrix Composites PDF Author: Shankar Mall
Publisher: CRC Press
ISBN: 1000717658
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
A review and summary of advancements related to mechanical behavior and related mechanics issues of titanium matrix composites (TMCs), a class of high-temperature materials useful in the propulsion and airframe components in advanced aerospace systems. After an introduction to TMCs, different authors review and summarise the advancements related to mechanical behavior and related mechanics issues of TMCs.

Stress Concentrations in Filamentary Structures

Stress Concentrations in Filamentary Structures PDF Author: John M. Hedgepeth
Publisher:
ISBN:
Category : Crystal whiskers
Languages : en
Pages : 36

Get Book Here

Book Description


Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method

Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method PDF Author: Somnath Ghosh
Publisher: CRC Press
ISBN: 1420094386
Category : Technology & Engineering
Languages : en
Pages : 714

Get Book Here

Book Description
As multi-phase metal/alloy systems and polymer, ceramic, or metal matrix composite materials are increasingly being used in industry, the science and technology for these heterogeneous materials has advanced rapidly. By extending analytical and numerical models, engineers can analyze failure characteristics of the materials before they are integrat

Ceramic Fibers and Coatings

Ceramic Fibers and Coatings PDF Author: Committee on Advanced Fibers for High-Temperature Ceramic Composites
Publisher: National Academies Press
ISBN: 0309569036
Category : Technology & Engineering
Languages : en
Pages : 112

Get Book Here

Book Description
High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.

Analysis and Performance of Fiber Composites

Analysis and Performance of Fiber Composites PDF Author: Bhagwan D. Agarwal
Publisher: Wiley-Interscience
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 480

Get Book Here

Book Description
Having fully established themselves as workable engineering materials, composite materials are now increasingly commonplace around the world. Serves as both a text and reference guide to the behavior of composite materials in different engineering applications. Revised for this Second Edition, the text includes a general discussion of composites as material, practical aspects of design and performance, and further analysis that will be helpful to those engaged in research on composites. Each chapter closes with references for further reading and a set of problems that will be useful in developing a better understanding of the subject.