Similarity Methods for Differential Equations

Similarity Methods for Differential Equations PDF Author: G.W. Bluman
Publisher: Springer Science & Business Media
ISBN: 1461263948
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
The aim of this book is to provide a systematic and practical account of methods of integration of ordinary and partial differential equations based on invariance under continuous (Lie) groups of trans formations. The goal of these methods is the expression of a solution in terms of quadrature in the case of ordinary differential equations of first order and a reduction in order for higher order equations. For partial differential equations at least a reduction in the number of independent variables is sought and in favorable cases a reduction to ordinary differential equations with special solutions or quadrature. In the last century, approximately one hundred years ago, Sophus Lie tried to construct a general integration theory, in the above sense, for ordinary differential equations. Following Abel's approach for algebraic equations he studied the invariance of ordinary differential equations under transformations. In particular, Lie introduced the study of continuous groups of transformations of ordinary differential equations, based on the infinitesimal properties of the group. In a sense the theory was completely successful. It was shown how for a first-order differential equation the knowledge of a group leads immediately to quadrature, and for a higher order equation (or system) to a reduction in order. In another sense this theory is somewhat disappointing in that for a first-order differ ential equation essentially no systematic way can be given for finding the groups or showing that they do not exist for a first-order differential equation.

Similarity Methods for Differential Equations

Similarity Methods for Differential Equations PDF Author: G.W. Bluman
Publisher: Springer Science & Business Media
ISBN: 1461263948
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
The aim of this book is to provide a systematic and practical account of methods of integration of ordinary and partial differential equations based on invariance under continuous (Lie) groups of trans formations. The goal of these methods is the expression of a solution in terms of quadrature in the case of ordinary differential equations of first order and a reduction in order for higher order equations. For partial differential equations at least a reduction in the number of independent variables is sought and in favorable cases a reduction to ordinary differential equations with special solutions or quadrature. In the last century, approximately one hundred years ago, Sophus Lie tried to construct a general integration theory, in the above sense, for ordinary differential equations. Following Abel's approach for algebraic equations he studied the invariance of ordinary differential equations under transformations. In particular, Lie introduced the study of continuous groups of transformations of ordinary differential equations, based on the infinitesimal properties of the group. In a sense the theory was completely successful. It was shown how for a first-order differential equation the knowledge of a group leads immediately to quadrature, and for a higher order equation (or system) to a reduction in order. In another sense this theory is somewhat disappointing in that for a first-order differ ential equation essentially no systematic way can be given for finding the groups or showing that they do not exist for a first-order differential equation.

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists

Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists PDF Author: Bahman Zohuri
Publisher: Springer
ISBN: 3319134760
Category : Technology & Engineering
Languages : en
Pages : 379

Get Book Here

Book Description
This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book’s coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book’s theoretical explanations and step-by-step mathematical solutions to practical implementations.

Similarity and Symmetry Methods

Similarity and Symmetry Methods PDF Author: Jean-François Ganghoffer
Publisher: Springer
ISBN: 3319082965
Category : Science
Languages : en
Pages : 380

Get Book Here

Book Description
The principle aim of the book is to present a self-contained, modern account of similarity and symmetry methods, which are important mathematical tools for both physicists, engineers and applied mathematicians. The idea is to provide a balanced presentation of the mathematical techniques and applications of symmetry methods in mathematics, physics and engineering. That is why it includes recent developments and many examples in finding systematically conservation laws, local and nonlocal symmetries for ordinary and partial differential equations. The role of continuous symmetries in classical and quantum field theories is exposed at a technical level accessible even for non specialists. The importance of symmetries in continuum mechanics and mechanics of materials is highlighted through recent developments, such as the construction of constitutive models for various materials combining Lie symmetries with experimental data. As a whole this book is a unique collection of contributions from experts in the field, including specialists in the mathematical treatment of symmetries, researchers using symmetries from a fundamental, applied or numerical viewpoint. The book is a fascinating overview of symmetry methods aimed for graduate students in physics, mathematics and engineering, as well as researchers either willing to enter in the field or to capture recent developments and applications of symmetry methods in different scientific fields.

Similarity Methods for Differential Equations

Similarity Methods for Differential Equations PDF Author: George W. Bluman
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 332

Get Book Here

Book Description


Self-Similarity and Beyond

Self-Similarity and Beyond PDF Author: P.L. Sachdev
Publisher: CRC Press
ISBN: 1000611418
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
Nonlinearity plays a major role in the understanding of most physical, chemical, biological, and engineering sciences. Nonlinear problems fascinate scientists and engineers, but often elude exact treatment. However elusive they may be, the solutions do exist-if only one perseveres in seeking them out. Self-Similarity and Beyond presents

Symmetry and Integration Methods for Differential Equations

Symmetry and Integration Methods for Differential Equations PDF Author: George Bluman
Publisher: Springer Science & Business Media
ISBN: 0387216499
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.

Symmetry Methods for Differential Equations

Symmetry Methods for Differential Equations PDF Author: Peter Ellsworth Hydon
Publisher: Cambridge University Press
ISBN: 9780521497862
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.

Handbook of Differential Equations

Handbook of Differential Equations PDF Author: Daniel Zwillinger
Publisher: CRC Press
ISBN: 100046816X
Category : Mathematics
Languages : en
Pages : 737

Get Book Here

Book Description
Through the previous three editions, Handbook of Differential Equations has proven an invaluable reference for anyone working within the field of mathematics, including academics, students, scientists, and professional engineers. The book is a compilation of methods for solving and approximating differential equations. These include the most widely applicable methods for solving and approximating differential equations, as well as numerous methods. Topics include methods for ordinary differential equations, partial differential equations, stochastic differential equations, and systems of such equations. Included for nearly every method are: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users The fourth edition includes corrections, many supplied by readers, as well as many new methods and techniques. These new and corrected entries make necessary improvements in this edition.

Homotopy Analysis Method in Nonlinear Differential Equations

Homotopy Analysis Method in Nonlinear Differential Equations PDF Author: Shijun Liao
Publisher: Springer Science & Business Media
ISBN: 3642251323
Category : Mathematics
Languages : en
Pages : 566

Get Book Here

Book Description
"Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.

Applications of Lie's Theory of Ordinary and Partial Differential Equations

Applications of Lie's Theory of Ordinary and Partial Differential Equations PDF Author: L Dresner
Publisher: CRC Press
ISBN: 9781420050783
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
Lie's group theory of differential equations unifies the many ad hoc methods known for solving differential equations and provides powerful new ways to find solutions. The theory has applications to both ordinary and partial differential equations and is not restricted to linear equations. Applications of Lie's Theory of Ordinary and Partial Differential Equations provides a concise, simple introduction to the application of Lie's theory to the solution of differential equations. The author emphasizes clarity and immediacy of understanding rather than encyclopedic completeness, rigor, and generality. This enables readers to quickly grasp the essentials and start applying the methods to find solutions. The book includes worked examples and problems from a wide range of scientific and engineering fields.