Similarity-Based Pattern Analysis and Recognition

Similarity-Based Pattern Analysis and Recognition PDF Author: Marcello Pelillo
Publisher: Springer Science & Business Media
ISBN: 1447156285
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a “kernel tailoring” approach and a strategy for learning similarities directly from training data; describes various methods for “structure-preserving” embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.

Similarity-Based Pattern Analysis and Recognition

Similarity-Based Pattern Analysis and Recognition PDF Author: Marcello Pelillo
Publisher: Springer Science & Business Media
ISBN: 1447156285
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification algorithms; reviews similarity measures for non-vectorial data, considering both a “kernel tailoring” approach and a strategy for learning similarities directly from training data; describes various methods for “structure-preserving” embeddings of structured data; formulates classical pattern recognition problems from a purely game-theoretic perspective; examines two large-scale biomedical imaging applications.

Similarity-Based Pattern Recognition

Similarity-Based Pattern Recognition PDF Author: Marcello Pelillo
Publisher: Springer Science & Business Media
ISBN: 364224470X
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
This book constitutes the proceedings of the First International Workshop on Similarity Based Pattern Recognition, SIMBAD 2011, held in Venice, Italy, in September 2011. The 16 full papers and 7 poster papers presented were carefully reviewed and selected from 35 submissions. The contributions are organized in topical sections on dissimilarity characterization and analysis; generative models of similarity data; graph-based and relational models; clustering and dissimilarity data; applications; spectral methods and embedding.

Similarity Measures for Face Recognition

Similarity Measures for Face Recognition PDF Author: Enrico Vezzetti
Publisher: Bentham Science Publishers
ISBN: 1681080443
Category : Computers
Languages : en
Pages : 108

Get Book Here

Book Description
Face recognition has several applications, including security, such as (authentication and identification of device users and criminal suspects), and in medicine (corrective surgery and diagnosis). Facial recognition programs rely on algorithms that can compare and compute the similarity between two sets of images. This eBook explains some of the similarity measures used in facial recognition systems in a single volume. Readers will learn about various measures including Minkowski distances, Mahalanobis distances, Hansdorff distances, cosine-based distances, among other methods. The book also summarizes errors that may occur in face recognition methods. Computer scientists "facing face" and looking to select and test different methods of computing similarities will benefit from this book. The book is also useful tool for students undertaking computer vision courses.

Machine Learning and Data Mining in Pattern Recognition

Machine Learning and Data Mining in Pattern Recognition PDF Author: Petra Perner
Publisher: Springer Science & Business Media
ISBN: 3540405046
Category : Computers
Languages : en
Pages : 452

Get Book Here

Book Description
TheInternationalConferenceonMachineLearningandDataMining(MLDM)is the third meeting in a series of biennial events, which started in 1999, organized by the Institute of Computer Vision and Applied Computer Sciences (IBaI) in Leipzig. MLDM began as a workshop and is now a conference, and has brought the topic of machine learning and data mining to the attention of the research community. Seventy-?ve papers were submitted to the conference this year. The program committeeworkedhardtoselectthemostprogressiveresearchinafairandc- petent review process which led to the acceptance of 33 papers for presentation at the conference. The 33 papers in these proceedings cover a wide variety of topics related to machine learning and data mining. The two invited talks deal with learning in case-based reasoning and with mining for structural data. The contributed papers can be grouped into nine areas: support vector machines; pattern dis- very; decision trees; clustering; classi?cation and retrieval; case-based reasoning; Bayesian models and methods; association rules; and applications. We would like to express our appreciation to the reviewers for their precise andhighlyprofessionalwork.WearegratefultotheGermanScienceFoundation for its support of the Eastern European researchers. We appreciate the help and understanding of the editorial sta? at Springer Verlag, and in particular Alfred Hofmann,whosupportedthepublicationoftheseproceedingsintheLNAIseries. Last, but not least, we wish to thank all the speakers and participants who contributed to the success of the conference.

Pattern Recognition

Pattern Recognition PDF Author: Bernd Radig
Publisher: Springer Science & Business Media
ISBN: 3540454047
Category : Computers
Languages : en
Pages : 469

Get Book Here

Book Description
Sometimes milestones in the evolution of the DAGM Symposium become immediately visible. The Technical Committee decided to publish the symposium proceedings completely in English. As a consequence we successfully negotiated with Springer Verlag to publish in the international well accepted series “Lecture Notes in Computer Science”. The quality of the contributions convinced the editors and the lectors. Thanks to them and to the authors. We received 105 acceptable, good, and even excellent manuscripts. We selected carefully, using three reviewers for each anonymized paper, 58 talks and posters. Our 41 reviewers had a hard job evaluating and especially rejecting contributions. We are grateful for the time and effort they spent in this task. The program committee awarded prizes to the best papers. We are much obliged to the generous sponsors. We had three invited talks from outstanding colleagues, namely Bernhard Nebel (Robot Soccer – A Challenge for Cooperative Action and Perception), Thomas Lengauer (Computational Biology – An Interdisciplinary Challenge for Computational Pattern Recognition), and Nassir Navab (Medical and Industrial Augmented Reality: Challenges for Real Time Vision, Computer Graphics, and Mobile Computing). N. Navab even wrote a special paper for this conference, which is included in the proceedings. We were proud that we could convince well known experts to offer tutorials to our participants: H. P. Seidel, Univ. Saarbrücken – A Framework for the Acquisition, Processing, and Interactive Display of High Quality 3D Models; S. Heuel, Univ. Bonn – Projective Geometry for Grouping and Orientation Tasks; G. Rigoll, Univ.

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition) PDF Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814497649
Category : Computers
Languages : en
Pages : 1045

Get Book Here

Book Description
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning PDF Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Computer Vision - ACCV 2010

Computer Vision - ACCV 2010 PDF Author: Ron Kimmel
Publisher: Springer
ISBN: 3642193099
Category : Computers
Languages : en
Pages : 747

Get Book Here

Book Description
The four-volume set LNCS 6492-6495 constitutes the thoroughly refereed post-proceedings of the 10th Asian Conference on Computer Vision, ACCV 2009, held in Queenstown, New Zealand in November 2010. All together the four volumes present 206 revised papers selected from a total of 739 Submissions. All current issues in computer vision are addressed ranging from algorithms that attempt to automatically understand the content of images, optical methods coupled with computational techniques that enhance and improve images, and capturing and analyzing the world's geometry while preparing the higher level image and shape understanding. Novel geometry techniques, statistical learning methods, and modern algebraic procedures are dealt with as well.

Visual Population Codes

Visual Population Codes PDF Author: Nikolaus Kriegeskorte
Publisher: MIT Press
ISBN: 0262016249
Category : Mathematics
Languages : en
Pages : 659

Get Book Here

Book Description
How visual content is represented in neuronal population codes and how to analyze such codes with multivariate techniques. Vision is a massively parallel computational process, in which the retinal image is transformed over a sequence of stages so as to emphasize behaviorally relevant information (such as object category and identity) and deemphasize other information (such as viewpoint and lighting). The processes behind vision operate by concurrent computation and message passing among neurons within a visual area and between different areas. The theoretical concept of "population code" encapsulates the idea that visual content is represented at each stage by the pattern of activity across the local population of neurons. Understanding visual population codes ultimately requires multichannel measurement and multivariate analysis of activity patterns. Over the past decade, the multivariate approach has gained significant momentum in vision research. Functional imaging and cell recording measure brain activity in fundamentally different ways, but they now use similar theoretical concepts and mathematical tools in their modeling and analyses. With a focus on the ventral processing stream thought to underlie object recognition, this book presents recent advances in our understanding of visual population codes, novel multivariate pattern-information analysis techniques, and the beginnings of a unified perspective for cell recording and functional imaging. It serves as an introduction, overview, and reference for scientists and students across disciplines who are interested in human and primate vision and, more generally, in understanding how the brain represents and processes information.

Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition PDF Author: Christopher M. Bishop
Publisher: Oxford University Press
ISBN: 0198538642
Category : Computers
Languages : en
Pages : 501

Get Book Here

Book Description
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.