Author: Yongchao Liang
Publisher: Springer
ISBN: 9401799784
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth’s crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Bélanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Silicon in Agriculture
Author: Yongchao Liang
Publisher: Springer
ISBN: 9401799784
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth’s crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Bélanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Publisher: Springer
ISBN: 9401799784
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
This book mainly presents the current state of knowledge on the use of of Silicon (Si) in agriculture, including plants, soils and fertilizers. At the same time, it discusses the future interdisciplinary research that will be needed to further our knowledge and potential applications of Si in agriculture and in the environmental sciences in general. As the second most abundant element both on the surface of the Earth’s crust and in soils, Si is an agronomically essential or quasi-essential element for improving the yield and quality of crops. Addressing the use of Si in agriculture in both theory and practice, the book is primarily intended for graduate students and researchers in various fields of the agricultural, biological, and environmental sciences, as well as for agronomic and fertilizer industry experts and advisors. Dr. Yongchao Liang is a full professor at the College of Environmental and Resource Sciences of the Zhejiang University, Hangzhou, China. Dr. Miroslav Nikolic is a research professor at the Institute for Multidisciplinary Research of the University of Belgrade, Serbia. Dr. Richard Bélanger is a full professor at the Department of Plant Pathology of the Laval University, Canada and holder of a Canada Research Chair in plant protection. Dr. Haijun Gong is a full professor at College of Horticulture, Northwest A&F University, China. Dr. Alin Song is an associate professor at Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
Silicon in Plants
Author: Durgesh Kumar Tripathi
Publisher: CRC Press
ISBN: 1315352311
Category : Science
Languages : en
Pages : 674
Book Description
In the present era, rapid industrialization and urbanization has resulted in unwanted physiological, chemical, and biological changes in the environment that have harmful effects on crop quality and productivity. This situation is further worsened by the growing demand for food due to an ever increasing population. This forces plant scientists and agronomists to look forward for alternative strategies to enhance crop production and produce safer, healthier foods. Biotic and abiotic stresses are major constraints to crop productivity and have become an important challenge to agricultural scientists and agronomists due to the fact that both stress factors considerably reduce agriculture production worldwide per year. Silicon has various effects on plant growth and development, as well as crop yields. It increases photosynthetic activity, creates better disease resistance, reduces heavy metal toxicity, improves nutrient imbalance, and enhances drought tolerance. Silicon in Plants: Advances and Future Prospects presents the beneficial effects of silicon in improving productivity in plants and enhancing the capacity of plants to resist stresses from environmental factors. It compiles recent advances made worldwide in different leading laboratories concerning the role of silicon in plant biology in order to make these outcomes easily accessible to academicians, researchers, industrialists, and students. Nineteen chapters summarize information regarding the role of silicon in plants, their growth and development, physiological and molecular responses, and responses against the various abiotic stresses.
Publisher: CRC Press
ISBN: 1315352311
Category : Science
Languages : en
Pages : 674
Book Description
In the present era, rapid industrialization and urbanization has resulted in unwanted physiological, chemical, and biological changes in the environment that have harmful effects on crop quality and productivity. This situation is further worsened by the growing demand for food due to an ever increasing population. This forces plant scientists and agronomists to look forward for alternative strategies to enhance crop production and produce safer, healthier foods. Biotic and abiotic stresses are major constraints to crop productivity and have become an important challenge to agricultural scientists and agronomists due to the fact that both stress factors considerably reduce agriculture production worldwide per year. Silicon has various effects on plant growth and development, as well as crop yields. It increases photosynthetic activity, creates better disease resistance, reduces heavy metal toxicity, improves nutrient imbalance, and enhances drought tolerance. Silicon in Plants: Advances and Future Prospects presents the beneficial effects of silicon in improving productivity in plants and enhancing the capacity of plants to resist stresses from environmental factors. It compiles recent advances made worldwide in different leading laboratories concerning the role of silicon in plant biology in order to make these outcomes easily accessible to academicians, researchers, industrialists, and students. Nineteen chapters summarize information regarding the role of silicon in plants, their growth and development, physiological and molecular responses, and responses against the various abiotic stresses.
Silicon in Agriculture
Author: L.E. Datnoff
Publisher: Elsevier
ISBN: 0080541224
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Presenting the first book to focus on the importance of silicon for plant health and soil productivity and on our current understanding of this element as it relates to agriculture.Long considered by plant physiologists as a non-essential element, or plant nutrient, silicon was the center of attention at the first international conference on Silicon in Agriculture, held in Florida in 1999.Ninety scientists, growers, and producers of silicon fertilizer from 19 countries pondered a paradox in plant biology and crop science. They considered the element Si, second only to oxygen in quantity in soils, and absorbed by many plants in amounts roughly equivalent to those of such nutrients as sulfur or magnesium. Some species, including such staples as rice, may contain this element in amounts as great as or even greater than any other inorganic constituent. Compilations of the mineral composition of plants, however, and much of the plant physiological literature largely ignore this element. The participants in Silicon in Agriculture explored that extraordinary discrepancy between the silicon content of plants and that of the plant research enterprise.The participants, all of whom are active in agricultural science, with an emphasis on crop production, presented, and were presented with, a wealth of evidence that silicon plays a multitude of functions in the real world of plant life. Many soils in the humid tropics are low in plant available silicon, and the same condition holds in warm to hot humid areas elsewhere. Field experience, and experimentation even with nutrient solutions, reveals a multitude of functions of silicon in plant life. Resistance to disease is one, toleration of toxic metals such as aluminum, another. Silicon applications often minimize lodging of cereals (leaning over or even becoming prostrate), and often cause leaves to assume orientations more favorable for light interception. For some crops, rice and sugarcane in particular, spectacular yield responses to silicon application have been obtained. More recently, other crop species including orchids, daisies and yucca were reported to respond to silicon accumulation and plant growth/disease control. The culture solutions used for the hydroponic production of high-priced crops such as cucumbers and roses in many areas (The Netherlands for example) routinely included silicon, mainly for disease control. The biochemistry of silicon in plant cell walls, where most of it is located, is coming increasingly under scrutiny; the element may act as a crosslinking element between carbohydrate polymers.There is an increased conviction among scientists that the time is at hand to stop treating silicon as a plant biological nonentity. The element exists, and it matters.
Publisher: Elsevier
ISBN: 0080541224
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Presenting the first book to focus on the importance of silicon for plant health and soil productivity and on our current understanding of this element as it relates to agriculture.Long considered by plant physiologists as a non-essential element, or plant nutrient, silicon was the center of attention at the first international conference on Silicon in Agriculture, held in Florida in 1999.Ninety scientists, growers, and producers of silicon fertilizer from 19 countries pondered a paradox in plant biology and crop science. They considered the element Si, second only to oxygen in quantity in soils, and absorbed by many plants in amounts roughly equivalent to those of such nutrients as sulfur or magnesium. Some species, including such staples as rice, may contain this element in amounts as great as or even greater than any other inorganic constituent. Compilations of the mineral composition of plants, however, and much of the plant physiological literature largely ignore this element. The participants in Silicon in Agriculture explored that extraordinary discrepancy between the silicon content of plants and that of the plant research enterprise.The participants, all of whom are active in agricultural science, with an emphasis on crop production, presented, and were presented with, a wealth of evidence that silicon plays a multitude of functions in the real world of plant life. Many soils in the humid tropics are low in plant available silicon, and the same condition holds in warm to hot humid areas elsewhere. Field experience, and experimentation even with nutrient solutions, reveals a multitude of functions of silicon in plant life. Resistance to disease is one, toleration of toxic metals such as aluminum, another. Silicon applications often minimize lodging of cereals (leaning over or even becoming prostrate), and often cause leaves to assume orientations more favorable for light interception. For some crops, rice and sugarcane in particular, spectacular yield responses to silicon application have been obtained. More recently, other crop species including orchids, daisies and yucca were reported to respond to silicon accumulation and plant growth/disease control. The culture solutions used for the hydroponic production of high-priced crops such as cucumbers and roses in many areas (The Netherlands for example) routinely included silicon, mainly for disease control. The biochemistry of silicon in plant cell walls, where most of it is located, is coming increasingly under scrutiny; the element may act as a crosslinking element between carbohydrate polymers.There is an increased conviction among scientists that the time is at hand to stop treating silicon as a plant biological nonentity. The element exists, and it matters.
Porous Silicon in Practice
Author: M. J. Sailor
Publisher: John Wiley & Sons
ISBN: 3527641912
Category : Science
Languages : en
Pages : 214
Book Description
By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics, and MEMS (Micro Electro Mechanical Systems). Written by an outstanding, well-recognized expert in the field, this book provides detailed, step-by-step instructions to prepare and characterize the major types of porous silicon. It is intended for those new to the fi eld. Sampling of topics covered: * Principles of Etching Porous Silicon * Etch Cell Construction and Considerations * Photonic Crystals, Microcavities, and Bragg Stacks Etched in Silicon * Preparation of Free-standing Films and Particles of Porous Silicon * Preparation of Photoluminescent Nanoparticles from Porous Silicon * Preparation of Silicon Nanowires by Electrochemical Etch of Silicon * Surface Modifi cation Chemistry and Biochemistry * Measurement of Optical Properties * Measurement of Pore Size, Porosity, Thickness, Surface Area The whole is backed by a generous use of color photographs to illustrate the described procedures in detail, plus a bibliography of further literature pertinent to a wide range of application fi elds. For materials scientists, chemists, physicists, optical physicists, biomaterials scientists, neurobiologists, bioengineers, and graduate students in those fields, as well as those working in the semiconductor industry.
Publisher: John Wiley & Sons
ISBN: 3527641912
Category : Science
Languages : en
Pages : 214
Book Description
By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics, and MEMS (Micro Electro Mechanical Systems). Written by an outstanding, well-recognized expert in the field, this book provides detailed, step-by-step instructions to prepare and characterize the major types of porous silicon. It is intended for those new to the fi eld. Sampling of topics covered: * Principles of Etching Porous Silicon * Etch Cell Construction and Considerations * Photonic Crystals, Microcavities, and Bragg Stacks Etched in Silicon * Preparation of Free-standing Films and Particles of Porous Silicon * Preparation of Photoluminescent Nanoparticles from Porous Silicon * Preparation of Silicon Nanowires by Electrochemical Etch of Silicon * Surface Modifi cation Chemistry and Biochemistry * Measurement of Optical Properties * Measurement of Pore Size, Porosity, Thickness, Surface Area The whole is backed by a generous use of color photographs to illustrate the described procedures in detail, plus a bibliography of further literature pertinent to a wide range of application fi elds. For materials scientists, chemists, physicists, optical physicists, biomaterials scientists, neurobiologists, bioengineers, and graduate students in those fields, as well as those working in the semiconductor industry.
Silicon: From the Invention of the Microprocessor to the New Science of Consciousness
Author: Federico Faggin
Publisher: Waterside Productions
ISBN: 9781949003413
Category : Biography & Autobiography
Languages : en
Pages : 306
Book Description
"As soon as she heard me enter, Elvia awoke from a light sleep that had overcome her as she anxiously waited: 'How did it go?' Excited, I exclaimed: 'It works!' We embraced, almost overwhelmed with feelings of euphoria and happiness, aware that something epochal had happened. On that cold January night of 1971, the world's first microprocessor was born!" The creation of the microprocessor launched the digital age. The key technology allowing unprecedented integration, and the design of the world's first microprocessor, the Intel 4004, were the achievement of Federico Faggin. Shrinking an entire computer onto a tiny and inexpensive piece of silicon would come to define our daily lives, imbuing myriad devices and everyday objects with computational intelligence. In Silicon, internationally recognized inventor and entrepreneur Federico Faggin chronicles his "four lives" his formative years in war-torn Northern Italy; his pioneering work in American microelectronics; his successful career as a high-tech entrepreneur; and his more recent explorations into the mysteries of consciousness. In this heartfelt memoir, Faggin paints vivid anecdotes, steps readers through society-changing technological breakthroughs, and shares personal insights, as each of his lives propels the next.
Publisher: Waterside Productions
ISBN: 9781949003413
Category : Biography & Autobiography
Languages : en
Pages : 306
Book Description
"As soon as she heard me enter, Elvia awoke from a light sleep that had overcome her as she anxiously waited: 'How did it go?' Excited, I exclaimed: 'It works!' We embraced, almost overwhelmed with feelings of euphoria and happiness, aware that something epochal had happened. On that cold January night of 1971, the world's first microprocessor was born!" The creation of the microprocessor launched the digital age. The key technology allowing unprecedented integration, and the design of the world's first microprocessor, the Intel 4004, were the achievement of Federico Faggin. Shrinking an entire computer onto a tiny and inexpensive piece of silicon would come to define our daily lives, imbuing myriad devices and everyday objects with computational intelligence. In Silicon, internationally recognized inventor and entrepreneur Federico Faggin chronicles his "four lives" his formative years in war-torn Northern Italy; his pioneering work in American microelectronics; his successful career as a high-tech entrepreneur; and his more recent explorations into the mysteries of consciousness. In this heartfelt memoir, Faggin paints vivid anecdotes, steps readers through society-changing technological breakthroughs, and shares personal insights, as each of his lives propels the next.
Silicon Chemistry
Author: Peter Jutzi
Publisher: John Wiley & Sons
ISBN: 3527611215
Category : Science
Languages : de
Pages : 506
Book Description
The combined results from an international research project involving 40 interdisciplinary groups, providing the latest knowledge from the past few years. Adopting an application-oriented approach, this handy reference is a must-have for every silicon chemist, whether working in inorganic, organic, physical or polymer chemistry, materials science or physics.
Publisher: John Wiley & Sons
ISBN: 3527611215
Category : Science
Languages : de
Pages : 506
Book Description
The combined results from an international research project involving 40 interdisciplinary groups, providing the latest knowledge from the past few years. Adopting an application-oriented approach, this handy reference is a must-have for every silicon chemist, whether working in inorganic, organic, physical or polymer chemistry, materials science or physics.
Silicon-On-Insulator (SOI) Technology
Author: O. Kononchuk
Publisher: Elsevier
ISBN: 0857099256
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-on-oxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. - Covers SOI transistors and circuits, as well as manufacturing processes and reliability - Looks at applications such as memory, power devices, and photonics
Publisher: Elsevier
ISBN: 0857099256
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-on-oxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. - Covers SOI transistors and circuits, as well as manufacturing processes and reliability - Looks at applications such as memory, power devices, and photonics
Silicon in Organic Synthesis
Author: Ernest W. Colvin
Publisher: Butterworth-Heinemann
ISBN: 148314223X
Category : Science
Languages : en
Pages : 361
Book Description
Silicon in Organic Synthesis provides an introduction to the organic chemistry of silicon. This book places particular emphasis on the concept of silicon as a "ferryman, mediating the transformation of one wholly organic molecule into another. The book begins by reviewing the discovery and development of organosilicon compounds. This is followed by separate chapters on the physical properties of organosilicon compounds; the preparation of a-metallated organosilanes, which play a key role in preparative organosilicon chemistry; migration/rearrangement reactions of silicon; the preparation and chemistry of vinylsilanes, allylsilanes, arylsilanes, and organosilyl metallic compounds. Subsequent chapters cover the synthesis of compounds such as alkene, alkynylsilanes, allenylsilanes, silylketenes, alkyl silyl ethers, acyloxysilanes, and silyl enol ethers. This book aims to serve as a timely introduction to organic chemistry for students and practitioners of synthetic organic chemistry, as well as provide a source of useful information and possibly of new ideas to those already experienced in the area.
Publisher: Butterworth-Heinemann
ISBN: 148314223X
Category : Science
Languages : en
Pages : 361
Book Description
Silicon in Organic Synthesis provides an introduction to the organic chemistry of silicon. This book places particular emphasis on the concept of silicon as a "ferryman, mediating the transformation of one wholly organic molecule into another. The book begins by reviewing the discovery and development of organosilicon compounds. This is followed by separate chapters on the physical properties of organosilicon compounds; the preparation of a-metallated organosilanes, which play a key role in preparative organosilicon chemistry; migration/rearrangement reactions of silicon; the preparation and chemistry of vinylsilanes, allylsilanes, arylsilanes, and organosilyl metallic compounds. Subsequent chapters cover the synthesis of compounds such as alkene, alkynylsilanes, allenylsilanes, silylketenes, alkyl silyl ethers, acyloxysilanes, and silyl enol ethers. This book aims to serve as a timely introduction to organic chemistry for students and practitioners of synthetic organic chemistry, as well as provide a source of useful information and possibly of new ideas to those already experienced in the area.
Silicon Values
Author: Jillian C. York
Publisher: Verso Books
ISBN: 1788738829
Category : Political Science
Languages : en
Pages : 305
Book Description
The battle for online rights and for the future of democracy Who decides what is permissible on the internet: Politicians? Mark Zuckerberg? Users? Who determines when political debate becomes hate speech? How does this impact our identity or our ability to create communities and to protest? Silicon Values reports on the war for digital rights and how major corporations—Facebook, Twitter, Google and Tiktok—threaten democracy as they harvest our personal data in the pursuit of profit.
Publisher: Verso Books
ISBN: 1788738829
Category : Political Science
Languages : en
Pages : 305
Book Description
The battle for online rights and for the future of democracy Who decides what is permissible on the internet: Politicians? Mark Zuckerberg? Users? Who determines when political debate becomes hate speech? How does this impact our identity or our ability to create communities and to protest? Silicon Values reports on the war for digital rights and how major corporations—Facebook, Twitter, Google and Tiktok—threaten democracy as they harvest our personal data in the pursuit of profit.
Aluminum Alloy Castings
Author: John Gilbert Kaufman
Publisher: ASM International
ISBN: 0871708035
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
J. G. (Gil) Kaufman is currently president of his consulting company, Kaufman Associates.
Publisher: ASM International
ISBN: 0871708035
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
J. G. (Gil) Kaufman is currently president of his consulting company, Kaufman Associates.