SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION.

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40Å in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ((almost equal to)600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H2 selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H2 selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION.

SiC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. During Year I, we have successfully fabricated SiC macro porous membranes via extrusion of commercially available SiC powder, which were then deposited with thin, micro-porous (6 to 40Å in pore size) films via sol-gel technique as intermediate layers. Finally, an SiC hydrogen selective thin film was deposited on this substrate via our CVD/I technique. The composite membrane thus prepared demonstrated excellent hydrogen selectivity at high temperature ((almost equal to)600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H2 selective SiC membrane via pyrolysis of selected pre-ceramic polymers. Building upon the positive progress made in the Year I preliminary study, we will conduct an optimization study in Year II to develop an optimized H2 selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment.

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION.

SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION. PDF Author: Paul K. T. Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 72

Get Book Here

Book Description
A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that>99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and>97% hydrogen recovery and

Carbon Dioxide-selective Membranes and Their Applications in Hydrogen Processing

Carbon Dioxide-selective Membranes and Their Applications in Hydrogen Processing PDF Author: Jian Zou
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages :

Get Book Here

Book Description
Abstract: In this work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers and a CO2/H2 selectivity of 290 at 110°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to 10 ppm. With such membranes, there are several options to reduce the CO concentration of synthesis gas. One option is to develop a water gas shift (WGS) membrane reactor, in which both WGS reaction and CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane followed by a conventional WGS reactor. In the membrane reactor, a CO concentration of less than 10 ppm and a H2 concentration of greater than 50% (on dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5% CO2 removed from the synthesis gas, the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for fuel cells. The WGS reactor had a gas hourly space velocity of 7650 h−1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. We studied the synthesized membranes at feed pressures 200 psia and temperatures ranging from 100-150°C. The effects of feed pressure, microporous support, temperature, and permeate pressure were investigated using a simulated synthesis gas containing 20% carbon dioxide and 80% hydrogen.

Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications

Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications PDF Author: Angelo Basile
Publisher: Elsevier
ISBN: 0857093797
Category : Technology & Engineering
Languages : en
Pages : 849

Get Book Here

Book Description
Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmental applications presents a comprehensive review of membrane utilisation and integration within energy and environmental industries.Part one introduces the topic of membrane science and engineering, from the fundamentals of membrane processes and separation to membrane characterization and economic analysis. Part two focuses on membrane utilisation for carbon dioxide (CO2) capture in coal and gas power plants, including pre- and post-combustion and oxygen transport technologies. Part three reviews membranes for the petrochemical industry, with chapters covering hydrocarbon fuel, natural gas and synthesis gas processing, as well as advanced biofuels production. Part four covers membranes for alternative energy applications and energy storage, such as membrane technology for redox and lithium batteries, fuel cells and hydrogen production. Finally, part five discusses membranes utilisation in industrial and environmental applications, including microfiltration, ultrafiltration, and forward osmosis, as well as water, wastewater and nuclear power applications.With its distinguished editors and team of expert contributors, Advanced membrane science and technology for sustainable energy and environmental applications is an essential reference for membrane and materials engineers and manufacturers, as well as researchers and academics interested in this field. - Presents a comprehensive review of membrane science and technology, focusing on developments and applications in sustainable energy and clean-industry - Discusses the fundamentals of membrane processes and separation and membrane characterization and economic analysis - Addresses the key issues of membrane utilisation in coal and gas power plants and the petrochemical industry, the use of membranes for alternative energy applications and membrane utilisation in industrial and environmental applications

Reactive Separations Via a Hydrothermally Stable Hydrogen Selective Membrane. Final Report

Reactive Separations Via a Hydrothermally Stable Hydrogen Selective Membrane. Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
In this SBIR Phase I program, we have successfully completed the fabrication of SiC-based hydrogen selective membranes suitable for use as a membrane reactor for steam-methane reforming applications. Hydrothermal stability was performed for selected membrane to demonstrate their stability for appx. 50 hours under the proposed reforming condition. In addition, several mechanistic study was conducted to elucidate the SiC membrane formation mechanism. This understanding will facilitate membrane optimization work to be proposed for the Phase II study. The reaction study was postponed to the Phase II study.

Current Trends and Future Developments on (Bio-) Membranes

Current Trends and Future Developments on (Bio-) Membranes PDF Author: Angelo Basile
Publisher: Elsevier
ISBN: 0323993125
Category : Technology & Engineering
Languages : en
Pages : 576

Get Book Here

Book Description
Modern Approaches in Membrane Technology for Gas Separation and Water Treatment presents condensed information on novel and promising membrane materials. The book answers some major questions from the membrane community about three promising materials that are to be introduced at industrial scale. It introduces recent, out of the box, ideas concerning the application of new methods capable to enhance the membrane separation efficiency. Sections cover potential commercialization, important question on three famous membrane materials, and new approaches in membrane technology. Finally, the book describes and discusses three novel ideas about the potential effect of the magnetic field on membrane separation efficiency, the use of cryogenic technology on membrane separations, and the use of nanobubble technology on water membrane processes. - Focuses on the necessity for environmental-friendly and cost-effective purification and separation process - Lists all new membrane materials suitable for commercialization - Presents new modern approaches and ideas for improving the membrane efficiency

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes

A New Concept for the Fabrication of Hydrogen Selective Silica Membranes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
It was proposed to investigate a new concept for the synthesis of molecular sieve hydrogen selective membranes. This concept is based on the use of exfoliated layered zeolite precursors in coating processes to make nanocomposite films with inorganic or polymeric matrices. We discovered that creating exfoliated zeolite layers was much more difficult than anticipated because the methods originally proposed (based on existing literature reports) were not successful in providing exfoliated layers while preserving their porous structure. Although the original goals of fabricating high-selectivity-high-flux membranes that are stable under conditions present in a water-gas-shift reactor and that are able to selectively permeate hydrogen over all other components of the mixtures present in these reactors were not accomplished fully, significant progress has been made as follows: (1) Proof-of-concept hydrogen-selective nanocomposite membranes have been fabricated; (2) Methods to exfoliate layered zeolite precursors preserving the layer structure were identified; and (3) Unexpectedly, membranes exhibiting high ideal selectivity for carbon dioxide over nitrogen at room temperature were produced. The findings listed above provide confidence that the proposed novel concept can eventually be realized.

High Temperature Size Selective Membranes

High Temperature Size Selective Membranes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The objective of this research is to develop a high temperature size selective membrane capable of separating gas mixture components from each other based on molecular size, using a molecular sieving mechanism. The authors are evaluating two concepts: a composite of a carbon molecular sieve (CMS) with a tightly defined pore size distribution between 3 and 4 Å, and a microporous supporting matrix which provides mechanical strength and resistance to thermal degradation, and a sandwich of a CMS film between the porous supports. The high temperature membranes the authors are developing can be used to replace the current low-temperature unit operations for separating gaseous mixtures, especially hydrogen, from the products of the water gas shift reaction at high temperatures. Membranes that have a high selectivity and have both thermal and chemical stability would improve substantially the economics of the coal gasification process. These membranes can also improve other industrial processes such as the ammonia production and oil reform processes where hydrogen separation is crucial. Results of tests on a supported membrane and an unsupported carbon film are presented.

Membrane Reactors for Energy Applications and Basic Chemical Production

Membrane Reactors for Energy Applications and Basic Chemical Production PDF Author: Angelo Basile
Publisher: Elsevier
ISBN: 1782422277
Category : Technology & Engineering
Languages : en
Pages : 697

Get Book Here

Book Description
Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. - Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts - Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes - Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production - Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Catalytic Membranes for Facilitating the Water-gas Shift Reaction

Catalytic Membranes for Facilitating the Water-gas Shift Reaction PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
This program is directed at furthering the development of a metal- membrane-based process for economically producing pure hydrogen from the raw gasifier stream. A related program is directed at developing a metal-membrane-based process for cleanly and efficiently removing hydrogen sulfide from the hot gas stream. Both of these processes would be accomplished at 500°C to 800°C and are based on a novel hydrogen-permeable composite-metal membrane. Specific program objectives include (1) design, fabrication, and demonstration of pre-prototype membrane modules; (2) improving the membrane composition to increase the hydrogen flux; (3) evaluating membrane lifetime; and (4) conducting engineering and economic analyses of the processes.