Author: Peter Gates
Publisher: Springer
ISBN: 9812871799
Category : Education
Languages : en
Pages : 249
Book Description
Professor Stephen Lerman has been a leader in the field of mathematics education for thirty years. His work is extensive, making many significant contributions to a number of key areas of research. Stephen retired from South Bank University in 2012, where he had worked for over 20 years, though he continues to work at Loughborough University. In this book several of his long standing colleagues and collaborators reflect on his contribution to mathematics education, and in so doing illustrate how some of Steve’s ideas and interventions have resulted in significant shifts in the domain.
Shifts in the Field of Mathematics Education
Author: Peter Gates
Publisher: Springer
ISBN: 9812871799
Category : Education
Languages : en
Pages : 249
Book Description
Professor Stephen Lerman has been a leader in the field of mathematics education for thirty years. His work is extensive, making many significant contributions to a number of key areas of research. Stephen retired from South Bank University in 2012, where he had worked for over 20 years, though he continues to work at Loughborough University. In this book several of his long standing colleagues and collaborators reflect on his contribution to mathematics education, and in so doing illustrate how some of Steve’s ideas and interventions have resulted in significant shifts in the domain.
Publisher: Springer
ISBN: 9812871799
Category : Education
Languages : en
Pages : 249
Book Description
Professor Stephen Lerman has been a leader in the field of mathematics education for thirty years. His work is extensive, making many significant contributions to a number of key areas of research. Stephen retired from South Bank University in 2012, where he had worked for over 20 years, though he continues to work at Loughborough University. In this book several of his long standing colleagues and collaborators reflect on his contribution to mathematics education, and in so doing illustrate how some of Steve’s ideas and interventions have resulted in significant shifts in the domain.
Accessible Mathematics
Author: Steve Leinwand
Publisher: Heinemann Educational Books
ISBN:
Category : Mathematics
Languages : en
Pages : 140
Book Description
Raising students' math achievement doesn't mean ripping up your planning book and starting over. In Accessible Mathematics Steven Leinwand (author of Sensible Mathematics) shows how small shifts in the good teaching you already do can make a big difference in student learning. Steve focuses on the crucial issue of classroom instruction. He scours the research and visits highly effective classrooms for practical examples of small adjustments to your teaching that lead to deeper student learning in math. Some of his 10 classroom-tested teaching shifts may surprise you and others will validate your thinking. But all of them will improve your students' performance. Thoroughly practical and ever-aware of the limits of teachers' time, Steve gives you everything you need to put his commonsense ideas to use immediately. His extensive planning advice will help you streamline your teaching to get more from everything you do. Classroom examples from every grade level model teaching language and instructional moves. And his suggestions for professional learning help increase your effectiveness through the power of collaboration. Steven Leinwand shares your priority: raising the mathematical understanding and achievement of every one of your students. Read Accessible Mathematics, try his 10 suggestions in your practice, and discover how minor shifts in your teaching can put student learning into high gear.
Publisher: Heinemann Educational Books
ISBN:
Category : Mathematics
Languages : en
Pages : 140
Book Description
Raising students' math achievement doesn't mean ripping up your planning book and starting over. In Accessible Mathematics Steven Leinwand (author of Sensible Mathematics) shows how small shifts in the good teaching you already do can make a big difference in student learning. Steve focuses on the crucial issue of classroom instruction. He scours the research and visits highly effective classrooms for practical examples of small adjustments to your teaching that lead to deeper student learning in math. Some of his 10 classroom-tested teaching shifts may surprise you and others will validate your thinking. But all of them will improve your students' performance. Thoroughly practical and ever-aware of the limits of teachers' time, Steve gives you everything you need to put his commonsense ideas to use immediately. His extensive planning advice will help you streamline your teaching to get more from everything you do. Classroom examples from every grade level model teaching language and instructional moves. And his suggestions for professional learning help increase your effectiveness through the power of collaboration. Steven Leinwand shares your priority: raising the mathematical understanding and achievement of every one of your students. Read Accessible Mathematics, try his 10 suggestions in your practice, and discover how minor shifts in your teaching can put student learning into high gear.
Attitudes, Beliefs, Motivation and Identity in Mathematics Education
Author: Markku S. Hannula
Publisher: Springer
ISBN: 3319328115
Category : Education
Languages : en
Pages : 42
Book Description
This book records the state of the art in research on mathematics-related affect. It discusses the concepts and theories of mathematics-related affect along the lines of three dimensions. The first dimension identifies three broad categories of affect: motivation, emotions, and beliefs. The book contains one chapter on motivation, including discussions on how emotions and beliefs relate to motivation. There are two chapters that focus on beliefs and a chapter on attitude which cross-cuts through all these categories. The second dimension covers a rapidly fluctuating state to a more stable trait. All chapters in the book focus on trait-type affect and the chapter on motivation discusses both these dimensions. The third dimension regards the three main levels of theorizing: physiological (embodied), psychological (individual) and social. All chapters reflect that mathematics-related affect has mainly been studied using psychological theories.
Publisher: Springer
ISBN: 3319328115
Category : Education
Languages : en
Pages : 42
Book Description
This book records the state of the art in research on mathematics-related affect. It discusses the concepts and theories of mathematics-related affect along the lines of three dimensions. The first dimension identifies three broad categories of affect: motivation, emotions, and beliefs. The book contains one chapter on motivation, including discussions on how emotions and beliefs relate to motivation. There are two chapters that focus on beliefs and a chapter on attitude which cross-cuts through all these categories. The second dimension covers a rapidly fluctuating state to a more stable trait. All chapters in the book focus on trait-type affect and the chapter on motivation discusses both these dimensions. The third dimension regards the three main levels of theorizing: physiological (embodied), psychological (individual) and social. All chapters reflect that mathematics-related affect has mainly been studied using psychological theories.
A Journey in Mathematics Education Research
Author: Erna Yackel
Publisher: Springer Science & Business Media
ISBN: 9048197295
Category : Education
Languages : en
Pages : 255
Book Description
Our objective is to publish a book that lays out the theoretical constructs and research methodologies within mathematics education that have been developed by Paul Cobb and explains the process of their development. We propose to do so by including papers in which Cobb introduced new theoretical perspectives and methodologies into the literature, each preceded by a substantive accompanying introductory paper that explains the motivation/rationale for developing the new perspectives and/or methodologies and the processes through which they were developed, and Cobb’s own retrospective comments. In this way the book provides the reader with heretofore unpublished material that lays out in considerable detail the issues and problems that Cobb has confronted in his work, that, from his viewpoint, required theoretical and methodological shifts/advances and provides insight into how he has achieved the shifts/advances. The result will be a volume that, in addition to explaining Cobb’s contributions to the field of mathematics education, also provides the reader with insight into what is involved in developing an aggressive and evolving research program. When Cobb confronts problems and issues in his work that cannot be addressed using his existing theories and frameworks, he looks to other fields for theoretical inspiration. A critical feature of Cobb’s work is that in doing so, he consciously appropriates and adapts ideas from these other fields to the purpose of supporting processes of learning and teaching mathematics; He does not simply accept the goals or motives of those fields. As a result, Cobb reconceptualizes and reframes issues and concepts so that they result in new ways of investigating, exploring, and explaining phenomena that he encounters in the practical dimensions of his work, which include working in classrooms, with teachers, and with school systems. The effect is that the field of mathematics education is altered. Other researchers have found his "new ways of looking" useful to them. And they, in turn, adapt these ideas for their own use. The complexity of many of the ideas that Cobb has introduced into the field of mathematics education can lead to a multiplicity of interpretations by practitioners and by other researchers, based on their own experiential backgrounds. Therefore, by detailing the development of Cobb’s work, including the tensions involved in coming to grips with and reconciling apparently contrasting perspectives, the book will shed additional light on the processes of reconceptualization and thus help the reader to understand the reasons, mechanisms, and outcomes of researchers’ constant pursuit of new insights.
Publisher: Springer Science & Business Media
ISBN: 9048197295
Category : Education
Languages : en
Pages : 255
Book Description
Our objective is to publish a book that lays out the theoretical constructs and research methodologies within mathematics education that have been developed by Paul Cobb and explains the process of their development. We propose to do so by including papers in which Cobb introduced new theoretical perspectives and methodologies into the literature, each preceded by a substantive accompanying introductory paper that explains the motivation/rationale for developing the new perspectives and/or methodologies and the processes through which they were developed, and Cobb’s own retrospective comments. In this way the book provides the reader with heretofore unpublished material that lays out in considerable detail the issues and problems that Cobb has confronted in his work, that, from his viewpoint, required theoretical and methodological shifts/advances and provides insight into how he has achieved the shifts/advances. The result will be a volume that, in addition to explaining Cobb’s contributions to the field of mathematics education, also provides the reader with insight into what is involved in developing an aggressive and evolving research program. When Cobb confronts problems and issues in his work that cannot be addressed using his existing theories and frameworks, he looks to other fields for theoretical inspiration. A critical feature of Cobb’s work is that in doing so, he consciously appropriates and adapts ideas from these other fields to the purpose of supporting processes of learning and teaching mathematics; He does not simply accept the goals or motives of those fields. As a result, Cobb reconceptualizes and reframes issues and concepts so that they result in new ways of investigating, exploring, and explaining phenomena that he encounters in the practical dimensions of his work, which include working in classrooms, with teachers, and with school systems. The effect is that the field of mathematics education is altered. Other researchers have found his "new ways of looking" useful to them. And they, in turn, adapt these ideas for their own use. The complexity of many of the ideas that Cobb has introduced into the field of mathematics education can lead to a multiplicity of interpretations by practitioners and by other researchers, based on their own experiential backgrounds. Therefore, by detailing the development of Cobb’s work, including the tensions involved in coming to grips with and reconciling apparently contrasting perspectives, the book will shed additional light on the processes of reconceptualization and thus help the reader to understand the reasons, mechanisms, and outcomes of researchers’ constant pursuit of new insights.
Revolutions in Mathematics
Author: Donald Gillies
Publisher: Oxford University Press on Demand
ISBN: 9780198514862
Category : Language Arts & Disciplines
Languages : en
Pages : 353
Book Description
The essays in this book provide the first comprehensive treatment of the concept of revolution in mathematics. In 1962 an exciting discussion of revolutions in the natural sciences was prompted by the publication of Kuhn's The Structure of Scientific Revolutions. A fascinating but little knownoffshoot of this debate was begun in the USA in the mid-1970s: can the concept of revolutions be applied to mathematics as well as science? Michael Crowe declared that revolutions never occur in mathematics, while Joseph Dauben argued that there have been mathematical revolutions and gave someexamples.The original papers of Crowe, Dauben, and Mehrtens are reprinted in this book, together with additional chapters giving their current views. To this are added new contributions from nine further experts in the history of mathematics who each discuss an important episode and consider whether it was arevolution.This book is an excellent reference work and an ideal course text for both graduate and undergraduate courses in the history and philosophy of science and mathematics.
Publisher: Oxford University Press on Demand
ISBN: 9780198514862
Category : Language Arts & Disciplines
Languages : en
Pages : 353
Book Description
The essays in this book provide the first comprehensive treatment of the concept of revolution in mathematics. In 1962 an exciting discussion of revolutions in the natural sciences was prompted by the publication of Kuhn's The Structure of Scientific Revolutions. A fascinating but little knownoffshoot of this debate was begun in the USA in the mid-1970s: can the concept of revolutions be applied to mathematics as well as science? Michael Crowe declared that revolutions never occur in mathematics, while Joseph Dauben argued that there have been mathematical revolutions and gave someexamples.The original papers of Crowe, Dauben, and Mehrtens are reprinted in this book, together with additional chapters giving their current views. To this are added new contributions from nine further experts in the history of mathematics who each discuss an important episode and consider whether it was arevolution.This book is an excellent reference work and an ideal course text for both graduate and undergraduate courses in the history and philosophy of science and mathematics.
Categorical Homotopy Theory
Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371
Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.
Handbook of Research on Mathematics Teaching and Learning
Author: Douglas Grouws
Publisher: IAP
ISBN: 1607528746
Category : Mathematics
Languages : en
Pages : 784
Book Description
Sponsored by the National Council of Teachers of Mathematics and written by leading experts in the field of mathematics education, the Handbook is specifically designed to make important, vital scholarship accessible to mathematics education professors, graduate students, educational researchers, staff development directors, curriculum supervisors, and teachers. The Handbook provides a framework for understanding the evolution of the mathematics education research field against the backdrop of well-established conceptual, historical, theoretical, and methodological perspectives. It is an indispensable working tool for everyone interested in pursuing research in mathematics education as the references for each of the Handbook's twenty-nine chapters are complete resources for both current and past work in that particular area.
Publisher: IAP
ISBN: 1607528746
Category : Mathematics
Languages : en
Pages : 784
Book Description
Sponsored by the National Council of Teachers of Mathematics and written by leading experts in the field of mathematics education, the Handbook is specifically designed to make important, vital scholarship accessible to mathematics education professors, graduate students, educational researchers, staff development directors, curriculum supervisors, and teachers. The Handbook provides a framework for understanding the evolution of the mathematics education research field against the backdrop of well-established conceptual, historical, theoretical, and methodological perspectives. It is an indispensable working tool for everyone interested in pursuing research in mathematics education as the references for each of the Handbook's twenty-nine chapters are complete resources for both current and past work in that particular area.
International Reflections on the Netherlands Didactics of Mathematics
Author: Marja van den Heuvel-Panhuizen
Publisher: Springer
ISBN: 3030202232
Category : Education
Languages : en
Pages : 369
Book Description
This open access book, inspired by the ICME 13 Thematic Afternoon on “European Didactic Traditions”, takes readers on a journey with mathematics education researchers, developers and educators in eighteen countries, who reflect on their experiences with Realistic Mathematics Education (RME), the domain-specific instruction theory for mathematics education developed in the Netherlands since the late 1960s. Authors from outside the Netherlands discuss what aspects of RME appeal to them, their criticisms of RME and their past and current RME-based projects. It is clear that a particular approach to mathematics education cannot simply be transplanted to another country. As such, in eighteen chapters the authors describe how they have adapted RME to their individual circumstances and view on mathematics education, and tell their personal stories about how RME has influenced their thinking on mathematics education.
Publisher: Springer
ISBN: 3030202232
Category : Education
Languages : en
Pages : 369
Book Description
This open access book, inspired by the ICME 13 Thematic Afternoon on “European Didactic Traditions”, takes readers on a journey with mathematics education researchers, developers and educators in eighteen countries, who reflect on their experiences with Realistic Mathematics Education (RME), the domain-specific instruction theory for mathematics education developed in the Netherlands since the late 1960s. Authors from outside the Netherlands discuss what aspects of RME appeal to them, their criticisms of RME and their past and current RME-based projects. It is clear that a particular approach to mathematics education cannot simply be transplanted to another country. As such, in eighteen chapters the authors describe how they have adapted RME to their individual circumstances and view on mathematics education, and tell their personal stories about how RME has influenced their thinking on mathematics education.
Teaching and Learning of Calculus
Author: David Bressoud
Publisher: Springer
ISBN: 3319329758
Category : Education
Languages : en
Pages : 44
Book Description
This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions.
Publisher: Springer
ISBN: 3319329758
Category : Education
Languages : en
Pages : 44
Book Description
This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions.
Mathematical Proficiency for All Students: Toward a Strategic Research and Development Program in Mathematics Education
Author: Deborah Loewenberg
Publisher: Rand Corporation
ISBN: 0833034111
Category : Education
Languages : en
Pages : 123
Book Description
A clear need exists for substantial improvement in mathematics proficiency in U.S. schools. The RAND Mathematics Study Panel was convened to inform the U.S. Department of Education's Office of Educational Research and Improvement on ways to improve the quality and usability of education research and development (R&D). The panel identified three areas for focused R&D: development of teachers' mathematical knowledge used in teaching; teaching and learning of skills needed for mathematical thinking and problem-solving; and teaching and learning of algebra from kindergarten through the 12th grade.
Publisher: Rand Corporation
ISBN: 0833034111
Category : Education
Languages : en
Pages : 123
Book Description
A clear need exists for substantial improvement in mathematics proficiency in U.S. schools. The RAND Mathematics Study Panel was convened to inform the U.S. Department of Education's Office of Educational Research and Improvement on ways to improve the quality and usability of education research and development (R&D). The panel identified three areas for focused R&D: development of teachers' mathematical knowledge used in teaching; teaching and learning of skills needed for mathematical thinking and problem-solving; and teaching and learning of algebra from kindergarten through the 12th grade.