Shallow Flows

Shallow Flows PDF Author: Gerhard H. Jirka
Publisher: CRC Press
ISBN: 9780203027325
Category : Science
Languages : en
Pages : 692

Get Book Here

Book Description
This text presents the key findings of the International Symposium held in Delft in 2003, which explored the process of shallow flows. Shallow flows are found in lowland rivers, lakes, estuaries, bays, coastal areas and in density-stratified atmospheres, and may be observed in puddles, as in oceans. They impact on the life and work of a w

Shallow Flows

Shallow Flows PDF Author: Gerhard H. Jirka
Publisher: CRC Press
ISBN: 9780203027325
Category : Science
Languages : en
Pages : 692

Get Book Here

Book Description
This text presents the key findings of the International Symposium held in Delft in 2003, which explored the process of shallow flows. Shallow flows are found in lowland rivers, lakes, estuaries, bays, coastal areas and in density-stratified atmospheres, and may be observed in puddles, as in oceans. They impact on the life and work of a w

Numerical Methods for Shallow-Water Flow

Numerical Methods for Shallow-Water Flow PDF Author: C.B. Vreugdenhil
Publisher: Springer Science & Business Media
ISBN: 9401583544
Category : Science
Languages : en
Pages : 273

Get Book Here

Book Description
A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.

Shock-Capturing Methods for Free-Surface Shallow Flows

Shock-Capturing Methods for Free-Surface Shallow Flows PDF Author: E. F. Toro
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.

Free-Surface Flow:

Free-Surface Flow: PDF Author: Nikolaos D. Katopodes
Publisher: Butterworth-Heinemann
ISBN: 0128154888
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Free-Surface Flow: Shallow-Water Dynamics presents a novel approach to this phenomenon. It bridges the gap between traditional books on open-channel flow and analytical fluid mechanics. Shallow-water theory is established by formal integration of the Navier-Stokes equations, and boundary resistance is developed by a rigorous construction of turbulent flow models for channel flow. In addition, the book presents a comprehensive description of shallow-water waves by mathematical analysis. These methods form the foundation for understanding flood routing, sudden water releases, dam and levee break, sluice gate dynamics and wave-current interaction. - Bridges the gap between traditional books on open-channel flow and wave mechanics - Presents a comprehensive description of shallow-water waves by characteristic and bicharacteristic analysis - Presents techniques for wave control and active flood mitigation

Lattice Boltzmann Methods for Shallow Water Flows

Lattice Boltzmann Methods for Shallow Water Flows PDF Author: Jian Guo Zhou
Publisher: Springer Science & Business Media
ISBN: 9783540407461
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
This book describes a modern numerical technique, a lattice Boltzmann method, for shallow water flows with or without flow turbulence. This method requires only a simple microscopic equation to determine the depth and velocity based on its recovered macroscopic properties. The method is accurate and efficient for simulating complicated flows and flows within complex geometries, so it is becoming a powerful design tool in fluids engineering. The book may be used as a reference for scientists and engineers, a practical guide to the method for consultant organisations, and a textbook for graduates in engineering sciences such as coastal, civil and environmental engineering.

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method

Modeling Shallow Water Flows Using the Discontinuous Galerkin Method PDF Author: Abdul A. Khan
Publisher: CRC Press
ISBN: 1482226022
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
This book introduces the discontinuous Galerkin (DG) method and its application to shallow water flows. The emphasis is to show details and modifications required to apply the scheme to real-world flow problems. It allows the readers to understand and develop robust and efficient computer simulation models that can be used to model flow, contaminant transport, and other factors in rivers and coastal environments. The book includes a large set of tests to illustrate the use of the model for a wide range of applications.

Shallow Water Hydraulics

Shallow Water Hydraulics PDF Author: Oscar Castro-Orgaz
Publisher: Springer Nature
ISBN: 3030130738
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This book presents the theory and computation of open channel flows, using detailed analytical, numerical and experimental results. The fundamental equations of open channel flows are derived by means of a rigorous vertical integration of the RANS equations for turbulent flow. In turn, the hydrostatic pressure hypothesis, which forms the core of many shallow water hydraulic models, is scrutinized by analyzing its underlying assumptions. The book’s main focus is on one-dimensional models, including detailed treatments of unsteady and steady flows. The use of modern shock capturing finite difference and finite volume methods is described in detail, and the quality of solutions is carefully assessed on the basis of analytical and experimental results. The book’s unique features include: • Rigorous derivation of the hydrostatic-based shallow water hydraulic models • Detailed treatment of steady open channel flows, including the computation of transcritical flow profiles • General analysis of gate maneuvers as the solution of a Riemann problem • Presents modern shock capturing finite volume methods for the computation of unsteady free surface flows • Introduces readers to movable bed and sediment transport in shallow water models • Includes numerical solutions of shallow water hydraulic models for non-hydrostatic steady and unsteady free surface flows This book is suitable for both undergraduate and graduate level students, given that the theory and numerical methods are progressively introduced starting with the basics. As supporting material, a collection of source codes written in Visual Basic and inserted as macros in Microsoft Excel® is available. The theory is implemented step-by-step in the codes, and the resulting programs are used throughout the book to produce the respective solutions.

Handbook of Environmental Fluid Dynamics, Volume One

Handbook of Environmental Fluid Dynamics, Volume One PDF Author: Harindra Joseph Fernando
Publisher: CRC Press
ISBN: 1439816697
Category : Science
Languages : en
Pages : 638

Get Book Here

Book Description
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the study of environmental motions. It also offers critical discussions of environmental sustainability related to engineering. The handbook features 81 chapters written by 135 renowned researchers from around the world. Covering environmental, policy, biological, and chemical aspects, it tackles important cross-disciplinary topics such as sustainability, ecology, pollution, micrometeorology, and limnology. Volume One: Overview and Fundamentals provides a comprehensive overview of the basic principles. It starts with general topics that emphasize the relevance of environmental fluid dynamics research in society, public policy, infrastructure, quality of life, security, and the law. It then discusses established and emerging focus areas. The volume also examines the sub-mesoscale flow processes and phenomena that form the building blocks of environmental motions, with emphasis on turbulent motions and their role in heat, momentum, and species transport. As communities face existential challenges posed by climate change, rapid urbanization, and scarcity of water and energy, the study of environmental fluid dynamics becomes increasingly relevant. This volume is a valuable resource for students, researchers, and policymakers working to better understand the fundamentals of environmental motions and how they affect and are influenced by anthropogenic activities. See also Handbook of Environmental Fluid Dynamics, Two-Volume Set and Volume Two: Systems, Pollution, Modeling, and Measurements.

Large-Scale Simulation

Large-Scale Simulation PDF Author: Dan Chen
Publisher: CRC Press
ISBN: 0415670454
Category : Computers
Languages : en
Pages : 452

Get Book Here

Book Description
Large-Scale Simulation: Models, Algorithms, and Applications gives you firsthand insight on the latest advances in large-scale simulation techniques. Most of the research results are drawn from the authors’ papers in top-tier, peer-reviewed, scientific conference proceedings and journals. The first part of the book presents the fundamentals of large-scale simulation, including high-level architecture and runtime infrastructure. The second part covers middleware and software architecture for large-scale simulations, such as decoupled federate architecture, fault tolerant mechanisms, grid-enabled simulation, and federation communities. In the third part, the authors explore mechanisms—such as simulation cloning methods and algorithms—that support quick evaluation of alternative scenarios. The final part describes how distributed computing technologies and many-core architecture are used to study social phenomena. Reflecting the latest research in the field, this book guides you in using and further researching advanced models and algorithms for large-scale distributed simulation. These simulation tools will help you gain insight into large-scale systems across many disciplines.

River Flow 2020

River Flow 2020 PDF Author: Wim Uijttewaal
Publisher: CRC Press
ISBN: 1000294366
Category : Technology & Engineering
Languages : en
Pages : 2459

Get Book Here

Book Description
Rivers form one of the lifelines in our society by providing essential services such as availability of fresh water, navigation, energy, ecosystem services, and flood conveyance. Because of this essential role, mankind has interfered continuously in order to benefit most and at the same time avoid adverse consequences such as flood risk and droughts. This has resulted in often highly engineered rivers with a narrow set of functions. In the last decades rivers are increasingly considered in a more holistic manner as a system with a multitude of interdependent processes. River research and engineering has therefore added to the river fundamentals also themes like ecohydraulics, consequences of climate change, and urbanisation. River Flow 2020 contains the contributions presented at the 10th conference on Fluvial Hydraulics, River Flow 2020, organised under the auspices of the Committee on Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). What should have been a lively physical gathering of researchers, students and practitioners, was converted into an online event as the COVID-19 pandemic hindered international travelling and large gatherings of people. Nevertheless, the fluvial hydraulics community showed their interest and to be very much alive with a high number of participations for such event. Since its first edition in 2002, in Louvain-la-Neuve, this series of conferences has found a large and loyal audience in the river research and engineering community while being also attractive to the new researchers and young professionals. This is highlighted by the large number of contributions applying for the Coleman award for young researchers, and also by the number of applications and attendants to the Master Classes which are aimed at young researchers and students. River Flow 2020 aims to provide an updated overview of the ongoing research in this wide range of topics, and contains five major themes which are focus of research in the fluvial environment: river fundamentals, the digital river, the healthy river, extreme events and rivers under pressure. Other highlights of River Flow 2020 include the substantial number of interdisciplinary subthemes and sessions of special interest. The contributions will therefore be of interest to academics in hydraulics, hydrology and environmental engineering as well as practitioners that would like to be updated about the newest findings and hot themes in river research and engineering.