Author: Marcelo G.
Publisher: Springer Nature
ISBN: 3031025350
Category : Technology & Engineering
Languages : en
Pages : 87
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary
Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
Author: Marcelo G.
Publisher: Springer Nature
ISBN: 3031025350
Category : Technology & Engineering
Languages : en
Pages : 87
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary
Publisher: Springer Nature
ISBN: 3031025350
Category : Technology & Engineering
Languages : en
Pages : 87
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary
Sequential Monte Carlo Methods for Nonlinear Discrete-time Filtering
Author: Marcelo G. S. Bruno
Publisher: Morgan & Claypool Publishers
ISBN: 1627051198
Category : Computers
Languages : en
Pages : 101
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Publisher: Morgan & Claypool Publishers
ISBN: 1627051198
Category : Computers
Languages : en
Pages : 101
Book Description
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.
Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590
Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.
Publisher: Springer Science & Business Media
ISBN: 1475734379
Category : Mathematics
Languages : en
Pages : 590
Book Description
Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
An Introduction to Sequential Monte Carlo
Author: Nicolas Chopin
Publisher: Springer Nature
ISBN: 3030478459
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Publisher: Springer Nature
ISBN: 3030478459
Category : Mathematics
Languages : en
Pages : 390
Book Description
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Monte Carlo Methods and Applications
Author: Karl K. Sabelfeld
Publisher: Walter de Gruyter
ISBN: 3110293587
Category : Mathematics
Languages : en
Pages : 248
Book Description
This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria
Publisher: Walter de Gruyter
ISBN: 3110293587
Category : Mathematics
Languages : en
Pages : 248
Book Description
This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria
Grid-based Nonlinear Estimation and Its Applications
Author: Bin Jia
Publisher: CRC Press
ISBN: 1351757407
Category : Mathematics
Languages : en
Pages : 198
Book Description
Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.
Publisher: CRC Press
ISBN: 1351757407
Category : Mathematics
Languages : en
Pages : 198
Book Description
Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.
Readings in Unobserved Components Models
Author: Andrew Harvey
Publisher: OUP Oxford
ISBN: 019151554X
Category : Business & Economics
Languages : en
Pages : 472
Book Description
This volume presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. The book is intended to give a self-contained presentation of the methods and applicative issues. Harvey has made major contributions to this field and provides substantial introductions throughout the book to form a unified view of the literature. - ;This book presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. It contains four parts, three of which concern recent theoretical developments in classical and Bayesian estimation of linear, nonlinear, and non Gaussian UC models, signal extraction and testing, and one is devoted to selected econometric applications. The first part focuses on the linear state space model; the readings provide insight on prediction theory, signal extraction, and likelihood inference for non stationary and non invertible processes, diagnostic checking, and the use of state space methods for spline smoothing. Part II deals with applications of linear UC models to various estimation problems concerning economic time series, such as trend-cycle decompositions, seasonal adjustment, and the modelling of the serial correlation induced by survey sample design. The issues involved in testing in linear UC models are the theme of part III, which considers tests concerned with whether or not certain variance parameters are zero, with special reference to stationarity tests. Finally, part IV is devoted to the advances concerning classical and Bayesian inference for non linear and non Gaussian state space models, an area that has been evolving very rapidly during the last decade, paralleling the advances in computational inference using stochastic simulation techniques. The book is intended to give a relatively self-contained presentation of the methods and applicative issues. For this purpose, each part comes with an introductory chapter by the editors that provides a unified view of the literature and the many important developments that have occurred in the last years. -
Publisher: OUP Oxford
ISBN: 019151554X
Category : Business & Economics
Languages : en
Pages : 472
Book Description
This volume presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. The book is intended to give a self-contained presentation of the methods and applicative issues. Harvey has made major contributions to this field and provides substantial introductions throughout the book to form a unified view of the literature. - ;This book presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. It contains four parts, three of which concern recent theoretical developments in classical and Bayesian estimation of linear, nonlinear, and non Gaussian UC models, signal extraction and testing, and one is devoted to selected econometric applications. The first part focuses on the linear state space model; the readings provide insight on prediction theory, signal extraction, and likelihood inference for non stationary and non invertible processes, diagnostic checking, and the use of state space methods for spline smoothing. Part II deals with applications of linear UC models to various estimation problems concerning economic time series, such as trend-cycle decompositions, seasonal adjustment, and the modelling of the serial correlation induced by survey sample design. The issues involved in testing in linear UC models are the theme of part III, which considers tests concerned with whether or not certain variance parameters are zero, with special reference to stationarity tests. Finally, part IV is devoted to the advances concerning classical and Bayesian inference for non linear and non Gaussian state space models, an area that has been evolving very rapidly during the last decade, paralleling the advances in computational inference using stochastic simulation techniques. The book is intended to give a relatively self-contained presentation of the methods and applicative issues. For this purpose, each part comes with an introductory chapter by the editors that provides a unified view of the literature and the many important developments that have occurred in the last years. -
Intelligent Robotics and Applications
Author: Zhiyong Chen
Publisher: Springer
ISBN: 3319975862
Category : Computers
Languages : en
Pages : 511
Book Description
The two volume set LNAI 10984 and LNAI 10985 constitutes the refereed proceedings of the 11th International Conference on Intelligent Robotics and Applications, ICIRA 2018, held in Newcastle, NSW, Australia, in August 2018. The 81 papers presented in the two volumes were carefully reviewed and selected from 129 submissions. The papers in the first volume of the set are organized in topical sections on multi-agent systems and distributed control; human-machine interaction; rehabilitation robotics; sensors and actuators; and industrial robot and robot manufacturing. The papers in the second volume of the set are organized in topical sections on robot grasping and control; mobile robotics and path planning; robotic vision, recognition and reconstruction; and robot intelligence and learning.
Publisher: Springer
ISBN: 3319975862
Category : Computers
Languages : en
Pages : 511
Book Description
The two volume set LNAI 10984 and LNAI 10985 constitutes the refereed proceedings of the 11th International Conference on Intelligent Robotics and Applications, ICIRA 2018, held in Newcastle, NSW, Australia, in August 2018. The 81 papers presented in the two volumes were carefully reviewed and selected from 129 submissions. The papers in the first volume of the set are organized in topical sections on multi-agent systems and distributed control; human-machine interaction; rehabilitation robotics; sensors and actuators; and industrial robot and robot manufacturing. The papers in the second volume of the set are organized in topical sections on robot grasping and control; mobile robotics and path planning; robotic vision, recognition and reconstruction; and robot intelligence and learning.
Neural Information Processing
Author: Masumi Ishikawa
Publisher: Springer
ISBN: 3540691588
Category : Computers
Languages : en
Pages : 1165
Book Description
These two-volume books comprise the post-conference proceedings of the 14th International Conference on Neural Information Processing (ICONIP 2007) held in Kitakyushu, Japan, during November 13–16, 2007. The Asia Paci?c Neural Network Assembly (APNNA) was founded in 1993. The ?rst ICONIP was held in 1994 in Seoul, Korea, sponsored by APNNA in collaboration with regional organizations. Since then, ICONIP has consistently provided prestigious opp- tunities for presenting and exchanging ideas on neural networks and related ?elds. Research ?elds covered by ICONIP have now expanded to include such ?elds as bioinformatics, brain machine interfaces, robotics, and computational intelligence. We had 288 ordinary paper submissions and 3 special organized session p- posals. Although the quality of submitted papers on the average was excepti- ally high, only 60% of them were accepted after rigorous reviews, each paper being reviewed by three reviewers. Concerning special organized session prop- als, two out of three were accepted. In addition to ordinary submitted papers, we invited 15 special organized sessions organized by leading researchers in emerging ?elds to promote future expansion of neural information processing. ICONIP 2007 was held at the newly established Kitakyushu Science and Research Park in Kitakyushu, Japan. Its theme was “Towards an Integrated Approach to the Brain—Brain-Inspired Engineering and Brain Science,” which emphasizes the need for cross-disciplinary approaches for understanding brain functions and utilizing the knowledge for contributions to the society. It was jointly sponsored by APNNA, Japanese Neural Network Society (JNNS), and the 21st century COE program at Kyushu Institute of Technology.
Publisher: Springer
ISBN: 3540691588
Category : Computers
Languages : en
Pages : 1165
Book Description
These two-volume books comprise the post-conference proceedings of the 14th International Conference on Neural Information Processing (ICONIP 2007) held in Kitakyushu, Japan, during November 13–16, 2007. The Asia Paci?c Neural Network Assembly (APNNA) was founded in 1993. The ?rst ICONIP was held in 1994 in Seoul, Korea, sponsored by APNNA in collaboration with regional organizations. Since then, ICONIP has consistently provided prestigious opp- tunities for presenting and exchanging ideas on neural networks and related ?elds. Research ?elds covered by ICONIP have now expanded to include such ?elds as bioinformatics, brain machine interfaces, robotics, and computational intelligence. We had 288 ordinary paper submissions and 3 special organized session p- posals. Although the quality of submitted papers on the average was excepti- ally high, only 60% of them were accepted after rigorous reviews, each paper being reviewed by three reviewers. Concerning special organized session prop- als, two out of three were accepted. In addition to ordinary submitted papers, we invited 15 special organized sessions organized by leading researchers in emerging ?elds to promote future expansion of neural information processing. ICONIP 2007 was held at the newly established Kitakyushu Science and Research Park in Kitakyushu, Japan. Its theme was “Towards an Integrated Approach to the Brain—Brain-Inspired Engineering and Brain Science,” which emphasizes the need for cross-disciplinary approaches for understanding brain functions and utilizing the knowledge for contributions to the society. It was jointly sponsored by APNNA, Japanese Neural Network Society (JNNS), and the 21st century COE program at Kyushu Institute of Technology.