Semiconductor Device Physics and Simulation

Semiconductor Device Physics and Simulation PDF Author: J.S. Yuan
Publisher: Springer Science & Business Media
ISBN: 9780306457241
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Semiconductor Device Physics and Simulation

Semiconductor Device Physics and Simulation PDF Author: J.S. Yuan
Publisher: Springer Science & Business Media
ISBN: 9780306457241
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Semiconductor Devices

Semiconductor Devices PDF Author: Kevin M. Kramer
Publisher: Prentice Hall
ISBN:
Category : Business & Economics
Languages : en
Pages : 746

Get Book Here

Book Description
CD-ROM contains: "Win32 version of SGFramework and the simulations contains in the book."

Semiconductor Optoelectronic Devices

Semiconductor Optoelectronic Devices PDF Author: Joachim Piprek
Publisher: Elsevier
ISBN: 0080469787
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. - Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software - Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters - Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices

Physics of Semiconductor Devices

Physics of Semiconductor Devices PDF Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 0470068302
Category : Technology & Engineering
Languages : en
Pages : 828

Get Book Here

Book Description
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

The Monte Carlo Method for Semiconductor Device Simulation

The Monte Carlo Method for Semiconductor Device Simulation PDF Author: Carlo Jacoboni
Publisher: Springer Science & Business Media
ISBN: 9783211821107
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.

Semiconductor Devices Explained

Semiconductor Devices Explained PDF Author: Ton J. Mouthaan
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Offers an innovative and accessible new approach to the teaching of the fundamentals of semiconductor components by exploiting simulation to explain the mechanisms behind current in semiconductor structures. Simulation is a popular tool used by engineers and scientists in device and process research and the accompanying two dimensional process and device simulation software 'MicroTec', enables students to make their own devices and allows the recreation of real performance under varying parameters. There is also an accompanying ftp site containing ICECREAM software (Integrated Circuits and Electronics group Computerized Remedial Education And Mastering) which improves understanding of the physics involved and covers semiconductor physics, junction diodes, silicon bipolar and MOS transistors and photonic devices like LEDs and lasers. Features include: * MicroTec diskette containing a two-dimensional process and device simulator on which the many simulation exercises mentioned in the text can be performed thereby facilitating learning through experimentation * Computer aided education software (accessible vita ftp) featuring question and answer games, which enables students to enhance their understanding of the physics involved and allows lecturers to set assignments * Broad coverage spanning the common devices: pn junctions, metal semiconductor junctions, photocells, lasers, bipolar transistors, and MOS transistors * Discussion of fundamental concepts and technological principles offering the student a valuable grounding in semiconductor physics * Examination of the implications of recent research on small dimensions, reliability problems and breakdown mechanisms. Semiconductor Devices Explained offers a comprehensive new approach to teaching the fundamentals of semiconductor components based on the use of the accompanying process and device simulation software. Simulation is a popular tool used by engineers and scientists in device and process research. It supports the understanding of basic phenomena by linking the theory to hands on applications and real world problems with semiconductor devices. Throughout the text students are encouraged to augment their understanding by undertaking simulations and creating their own devices. The ICECREAM programme (Integrated Circuits and Electronics group Computerized Remedial Education And Mastering) question and answer game leads students through the concepts of common devices and makes learning fun. There is also a self-test element in which a data bank generates questions on the fundamentals of semiconductor junctions enabling students to assess their progress. Larger projects suitable for use as examination assignments are also incorporated. The test package is freely available to lecturers from the author on request. The remedial component of ICECREAM is available from the Wiley ftp site. MicroTec comes on a disk in the back of the book.

Nitride Semiconductor Devices

Nitride Semiconductor Devices PDF Author: Joachim Piprek
Publisher: John Wiley & Sons
ISBN: 3527406670
Category : Technology & Engineering
Languages : en
Pages : 521

Get Book Here

Book Description
This is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. Gallium nitride and its related compounds enable the fabrication of highly efficient light-emitting diodes and lasers for a broad spectrum of wavelengths, ranging from red through yellow and green to blue and ultraviolet. Since the breakthrough demonstration of blue laser diodes by Shuji Nakamura in 1995, this field has experienced tremendous growth worldwide. Various applications can be seen in our everyday life, from green traffic lights to full-color outdoor displays to high-definition DVD players. In recent years, nitride device modeling and simulation has gained importance and advanced software tools are emerging. Similar developments occurred in the past with other semiconductors such as silicon, where computer simulation is now an integral part of device development and fabrication. This book presents a review of modern device concepts and models, written by leading researchers in the field. It is intended for scientists and device engineers who are interested in employing computer simulation for nitride device design and analysis.

Monte Carlo Simulation of Semiconductor Devices

Monte Carlo Simulation of Semiconductor Devices PDF Author: C. Moglestue
Publisher: Springer Science & Business Media
ISBN: 9401581339
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.

3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics PDF Author: Simon Li
Publisher: Springer Science & Business Media
ISBN: 1461404819
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.

Semiconductor Devices, 2nd Edition

Semiconductor Devices, 2nd Edition PDF Author: John Sparkes
Publisher: CRC Press
ISBN: 9780748773824
Category : Technology & Engineering
Languages : en
Pages : 238

Get Book Here

Book Description
Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of every chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series. Semiconductor Devices begins with a review of the necessary basic background in semiconductor materials and what semiconductor devices are expected to do, that is, their typical applications. Then the author explains, in order of increasing complexity, the main semiconductor devices in use today, beginning with p-n junctions in their various forms and ending with integrated circuits. In doing so, he presents both the "band" model and the "bond" model of semiconductors, since neither one on its own can account for all device behavior. The final chapter introduces more recently developed technologies, particularly the use of compound instead of silicon semiconductors, and the improvement in device performance these materials make possible. True to the Tutorial Guides in Electronic Engineering series standards, Semiconductor Devices offers a clear presentation, a multitude of illustrations, and fully worked examples supported by end-of-chapter exercises and suggestions for further reading. This book provides an ideal introduction to the fundamental theoretical principles underlying the operation of semiconductor devices and to their simple and effective mathematical modelling.