Semantic Mining of Social Networks

Semantic Mining of Social Networks PDF Author: Jie Tang
Publisher: Springer Nature
ISBN: 3031794621
Category : Mathematics
Languages : en
Pages : 193

Get Book Here

Book Description
Online social networks have already become a bridge connecting our physical daily life with the (web-based) information space. This connection produces a huge volume of data, not only about the information itself, but also about user behavior. The ubiquity of the social Web and the wealth of social data offer us unprecedented opportunities for studying the interaction patterns among users so as to understand the dynamic mechanisms underlying different networks, something that was previously difficult to explore due to the lack of available data. In this book, we present the architecture of the research for social network mining, from a microscopic point of view. We focus on investigating several key issues in social networks. Specifically, we begin with analytics of social interactions between users. The first kinds of questions we try to answer are: What are the fundamental factors that form the different categories of social ties? How have reciprocal relationships been developed from parasocial relationships? How do connected users further form groups? Another theme addressed in this book is the study of social influence. Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally. Considerable research has been conducted to verify the existence of social influence in various networks. However, few literature studies address how to quantify the strength of influence between users from different aspects. In Chapter 4 and in [138], we have studied how to model and predict user behaviors. One fundamental problem is distinguishing the effects of different social factors such as social influence, homophily, and individual's characteristics. We introduce a probabilistic model to address this problem. Finally, we use an academic social network, ArnetMiner, as an example to demonstrate how we apply the introduced technologies for mining real social networks. In this system, we try to mine knowledge from both the informative (publication) network and the social (collaboration) network, and to understand the interaction mechanisms between the two networks. The system has been in operation since 2006 and has already attracted millions of users from more than 220 countries/regions.

Social Media Mining and Social Network Analysis: Emerging Research

Social Media Mining and Social Network Analysis: Emerging Research PDF Author: Xu, Guandong
Publisher: IGI Global
ISBN: 1466628073
Category : Computers
Languages : en
Pages : 272

Get Book Here

Book Description
Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.

Data Mining in Dynamic Social Networks and Fuzzy Systems

Data Mining in Dynamic Social Networks and Fuzzy Systems PDF Author: Bhatnagar, Vishal
Publisher: IGI Global
ISBN: 1466642149
Category : Computers
Languages : en
Pages : 412

Get Book Here

Book Description
Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.

Social Network Data Analytics

Social Network Data Analytics PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441984623
Category : Computers
Languages : en
Pages : 508

Get Book Here

Book Description
Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.

Social Networks and the Semantic Web

Social Networks and the Semantic Web PDF Author: Peter Mika
Publisher: Springer Science & Business Media
ISBN: 0387710019
Category : Computers
Languages : en
Pages : 237

Get Book Here

Book Description
Social Networks and the Semantic Web offers valuable information to practitioners developing social-semantic software for the Web. It provides two major case studies. The first case study shows the possibilities of tracking a research community over the Web. It reveals how social network mining from the web plays an important role for obtaining large scale, dynamic network data beyond the possibilities of survey methods. The second case study highlights the role of the social context in user-generated classifications in content, such as the tagging systems known as folksonomies.

Sentiment Analysis in Social Networks

Sentiment Analysis in Social Networks PDF Author: Federico Alberto Pozzi
Publisher: Morgan Kaufmann
ISBN: 0128044381
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics

Web Mining and Social Networking

Web Mining and Social Networking PDF Author: Guandong Xu
Publisher: Springer Science & Business Media
ISBN: 144197735X
Category : Computers
Languages : en
Pages : 218

Get Book Here

Book Description
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.

Handbook of Social Network Technologies and Applications

Handbook of Social Network Technologies and Applications PDF Author: Borko Furht
Publisher: Springer Science & Business Media
ISBN: 1441971424
Category : Computers
Languages : en
Pages : 718

Get Book Here

Book Description
Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.

Cognitive Social Mining Applications in Data Analytics and Forensics

Cognitive Social Mining Applications in Data Analytics and Forensics PDF Author: Haldorai, Anandakumar
Publisher: IGI Global
ISBN: 1522575235
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data. Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.

Encyclopedia of Social Network Analysis and Mining

Encyclopedia of Social Network Analysis and Mining PDF Author: Reda Alhajj
Publisher: Springer
ISBN: 9781493971305
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
The Encyclopedia of Social Network Analysis and Mining (ESNAM) is the first major reference work to integrate fundamental concepts and research directions in the areas of social networks and applications to data mining. The second edition of ESNAM is a truly outstanding reference appealing to researchers, practitioners, instructors and students (both undergraduate and graduate), as well as the general public. This updated reference integrates all basics concepts and research efforts under one umbrella. Coverage has been expanded to include new emerging topics such as crowdsourcing, opinion mining, and sentiment analysis. Revised content of existing material keeps the encyclopedia current. The second edition is intended for college students as well as public and academic libraries. It is anticipated to continue to stimulate more awareness of social network applications and research efforts. The advent of electronic communication, and in particular on-line communities, have created social networks of hitherto unimaginable sizes. Reflecting the interdisciplinary nature of this unique field, the essential contributions of diverse disciplines, from computer science, mathematics, and statistics to sociology and behavioral science, are described among the 300 authoritative yet highly readable entries. Students will find a world of information and insight behind the familiar façade of the social networks in which they participate. Researchers and practitioners will benefit from a comprehensive perspective on the methodologies for analysis of constructed networks, and the data mining and machine learning techniques that have proved attractive for sophisticated knowledge discovery in complex applications. Also addressed is the application of social network methodologies to other domains, such as web networks and biological networks.