Author: Luis T. Aguilar
Publisher: Birkhäuser
ISBN: 3319233033
Category : Science
Languages : en
Pages : 163
Book Description
This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.
Self-Oscillations in Dynamic Systems
Nonlinear Oscillations and Waves in Dynamical Systems
Author: P.S Landa
Publisher: Springer Science & Business Media
ISBN: 9401587639
Category : Mathematics
Languages : en
Pages : 550
Book Description
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
Publisher: Springer Science & Business Media
ISBN: 9401587639
Category : Mathematics
Languages : en
Pages : 550
Book Description
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
Control and Dynamic Systems
Author: C. T. Leondes
Publisher: Elsevier
ISBN: 1483191230
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
Control and Dynamic Systems: Advances in Theory and Applications reviews progress in the field of control and dynamic systems theory and applications. Topics include multistage models and fitting them to input/output data; computer-aided control systems design techniques; multilevel optimization of multiple arc trajectories; and nonlinear smoothing techniques. Solutions of dynamic games are also considered, and a survey of Soviet contributions to control theory is presented. Comprised of six chapters, this volume begins with a discussion on a number of important issues with respect to the modeling of a dynamic system, the beginning point for the resolution of the system synthesis problem. Issues with respect to the utilization of the Kalman filter as a concise model for the identification of a large class of dynamic systems are explored, along with computational and convergence issues. The application of computer-aided design techniques to control engineering problems is the subject of the next chapter. The book also evaluates multilevel systems optimization techniques and their application to a rather complex systems problem before concluding with an overview of the evolutionary growth of Soviet contributions to control theory. This monograph will be useful to mathematicians and engineers.
Publisher: Elsevier
ISBN: 1483191230
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
Control and Dynamic Systems: Advances in Theory and Applications reviews progress in the field of control and dynamic systems theory and applications. Topics include multistage models and fitting them to input/output data; computer-aided control systems design techniques; multilevel optimization of multiple arc trajectories; and nonlinear smoothing techniques. Solutions of dynamic games are also considered, and a survey of Soviet contributions to control theory is presented. Comprised of six chapters, this volume begins with a discussion on a number of important issues with respect to the modeling of a dynamic system, the beginning point for the resolution of the system synthesis problem. Issues with respect to the utilization of the Kalman filter as a concise model for the identification of a large class of dynamic systems are explored, along with computational and convergence issues. The application of computer-aided design techniques to control engineering problems is the subject of the next chapter. The book also evaluates multilevel systems optimization techniques and their application to a rather complex systems problem before concluding with an overview of the evolutionary growth of Soviet contributions to control theory. This monograph will be useful to mathematicians and engineers.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Dynamic Systems for Everyone
Author: Asish Ghosh
Publisher: Springer
ISBN: 3319107356
Category : Science
Languages : en
Pages : 252
Book Description
This book is a study of the interactions between different types of systems, their environment, and their subsystems. The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life. Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts. The book includes many examples covering various types of systems. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.
Publisher: Springer
ISBN: 3319107356
Category : Science
Languages : en
Pages : 252
Book Description
This book is a study of the interactions between different types of systems, their environment, and their subsystems. The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life. Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts. The book includes many examples covering various types of systems. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.
Theory of Oscillators
Author: A. A. Andronov
Publisher: Elsevier
ISBN: 1483194728
Category : Science
Languages : en
Pages : 848
Book Description
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-oscillating systems. This book discusses as well the discontinuous self-oscillations of a symmetrical multi-vibrator neglecting anode reaction. The final chapter deals with the immense practical importance of the stability of physical systems containing energy sources particularly control systems. This book is a valuable resource for electrical engineers, scientists, physicists, and mathematicians.
Publisher: Elsevier
ISBN: 1483194728
Category : Science
Languages : en
Pages : 848
Book Description
Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-oscillating systems. This book discusses as well the discontinuous self-oscillations of a symmetrical multi-vibrator neglecting anode reaction. The final chapter deals with the immense practical importance of the stability of physical systems containing energy sources particularly control systems. This book is a valuable resource for electrical engineers, scientists, physicists, and mathematicians.
Bifurcations and Chaos in Piecewise-smooth Dynamical Systems
Author: Zhanybai T. Zhusubaliyev
Publisher: World Scientific
ISBN: 9812384200
Category : Mathematics
Languages : en
Pages : 377
Book Description
Technical problems often lead to differential equations with piecewise-smooth right-hand sides. Problems in mechanical engineering, for instance, violate the requirements of smoothness if they involve collisions, finite clearances, or stick-slip phenomena. Systems of this type can display a large variety of complicated bifurcation scenarios that still lack a detailed description.This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems. The practical significance of these phenomena is demonstrated through a series of well-documented and realistic applications to switching power converters, relay systems, and different types of pulse-width modulated control systems. Other examples are derived from mechanical engineering, digital electronics, and economic business-cycle theory.The topics considered in the book include abrupt transitions associated with modified period-doubling, saddle-node and Hopf bifurcations, the interplay between classical bifurcations and border-collision bifurcations, truncated bifurcation scenarios, period-tripling and -quadrupling bifurcations, multiple-choice bifurcations, new types of direct transitions to chaos, and torus destruction in nonsmooth systems.In spite of its orientation towards engineering problems, the book addresses theoretical and numerical problems in sufficient detail to be of interest to nonlinear scientists in general.
Publisher: World Scientific
ISBN: 9812384200
Category : Mathematics
Languages : en
Pages : 377
Book Description
Technical problems often lead to differential equations with piecewise-smooth right-hand sides. Problems in mechanical engineering, for instance, violate the requirements of smoothness if they involve collisions, finite clearances, or stick-slip phenomena. Systems of this type can display a large variety of complicated bifurcation scenarios that still lack a detailed description.This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems. The practical significance of these phenomena is demonstrated through a series of well-documented and realistic applications to switching power converters, relay systems, and different types of pulse-width modulated control systems. Other examples are derived from mechanical engineering, digital electronics, and economic business-cycle theory.The topics considered in the book include abrupt transitions associated with modified period-doubling, saddle-node and Hopf bifurcations, the interplay between classical bifurcations and border-collision bifurcations, truncated bifurcation scenarios, period-tripling and -quadrupling bifurcations, multiple-choice bifurcations, new types of direct transitions to chaos, and torus destruction in nonsmooth systems.In spite of its orientation towards engineering problems, the book addresses theoretical and numerical problems in sufficient detail to be of interest to nonlinear scientists in general.
Nonlinear Control Systems
Author: Zoran Vukic
Publisher: CRC Press
ISBN: 0824747631
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
This text emphasizes classical methods and presents essential analytical tools and strategies for the construction and development of improved design methods in nonlinear control. It offers engineering procedures for the frequency domain, as well as solved examples for clear understanding of control applications in the industrial, electrical, process, manufacturing, and automotive industries. The authors discuss Properties of nonlinear systems, stability, linearization methods, operating modes and dynamic analysis methods, phase trajectories in dynamic analysis of nonlinear systems, and harmonic linearization in dynamic analysis of nonlinear control systems operating in stabilization mode.
Publisher: CRC Press
ISBN: 0824747631
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
This text emphasizes classical methods and presents essential analytical tools and strategies for the construction and development of improved design methods in nonlinear control. It offers engineering procedures for the frequency domain, as well as solved examples for clear understanding of control applications in the industrial, electrical, process, manufacturing, and automotive industries. The authors discuss Properties of nonlinear systems, stability, linearization methods, operating modes and dynamic analysis methods, phase trajectories in dynamic analysis of nonlinear systems, and harmonic linearization in dynamic analysis of nonlinear control systems operating in stabilization mode.
Piecewise-smooth Dynamical Systems
Author: Mario Bernardo
Publisher: Springer Science & Business Media
ISBN: 1846287081
Category : Mathematics
Languages : en
Pages : 497
Book Description
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
Publisher: Springer Science & Business Media
ISBN: 1846287081
Category : Mathematics
Languages : en
Pages : 497
Book Description
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
Dynamic Patterns
Author: J. A. Scott Kelso
Publisher: MIT Press
ISBN: 9780262611312
Category : Medical
Languages : en
Pages : 368
Book Description
foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.
Publisher: MIT Press
ISBN: 9780262611312
Category : Medical
Languages : en
Pages : 368
Book Description
foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.