Self-learning Anomaly Detection in Industrial Production

Self-learning Anomaly Detection in Industrial Production PDF Author: Meshram, Ankush
Publisher: KIT Scientific Publishing
ISBN: 3731512572
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.

Self-learning Anomaly Detection in Industrial Production

Self-learning Anomaly Detection in Industrial Production PDF Author: Meshram, Ankush
Publisher: KIT Scientific Publishing
ISBN: 3731512572
Category :
Languages : en
Pages : 224

Get Book Here

Book Description
Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.

Proceedings of the 2018 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

Proceedings of the 2018 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory PDF Author: Beyerer, Jürgen
Publisher: KIT Scientific Publishing
ISBN: 3731509369
Category : Computers
Languages : en
Pages : 136

Get Book Here

Book Description


Outlier Analysis

Outlier Analysis PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319475789
Category : Computers
Languages : en
Pages : 481

Get Book Here

Book Description
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving

Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving PDF Author: Kalb, Tobias Michael
Publisher: KIT Scientific Publishing
ISBN: 3731513730
Category :
Languages : en
Pages : 236

Get Book Here

Book Description
Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.

Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory PDF Author: Beyerer, Jürgen
Publisher: KIT Scientific Publishing
ISBN: 3731513048
Category :
Languages : en
Pages : 140

Get Book Here

Book Description
In August 2022, Fraunhofer IOSB and IES of KIT held a joint workshop in a Schwarzwaldhaus near Triberg. Doctoral students presented research reports and discussed various topics like computer vision, optical metrology, network security, usage control, and machine learning. This book compiles the workshop's results and ideas, offering a comprehensive overview of the research program of IES and Fraunhofer IOSB.

Multimodal Panoptic Segmentation of 3D Point Clouds

Multimodal Panoptic Segmentation of 3D Point Clouds PDF Author: Dürr, Fabian
Publisher: KIT Scientific Publishing
ISBN: 3731513145
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion.

Outlier Ensembles

Outlier Ensembles PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319547658
Category : Computers
Languages : en
Pages : 288

Get Book Here

Book Description
This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Advanced Intelligent Computing Technology and Applications

Advanced Intelligent Computing Technology and Applications PDF Author: De-Shuang Huang
Publisher: Springer Nature
ISBN: 981975609X
Category :
Languages : en
Pages : 548

Get Book Here

Book Description


Deep Learning and XAI Techniques for Anomaly Detection

Deep Learning and XAI Techniques for Anomaly Detection PDF Author: Cher Simon
Publisher: Packt Publishing Ltd
ISBN: 1804613371
Category : Computers
Languages : en
Pages : 218

Get Book Here

Book Description
Create interpretable AI models for transparent and explainable anomaly detection with this hands-on guide Purchase of the print or Kindle book includes a free PDF eBook Key FeaturesBuild auditable XAI models for replicability and regulatory complianceDerive critical insights from transparent anomaly detection modelsStrike the right balance between model accuracy and interpretabilityBook Description Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance. Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that'll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you'll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis. This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you'll get equipped with XAI and anomaly detection knowledge that'll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you'll learn how to quantify and assess their explainability. By the end of this deep learning book, you'll be able to build a variety of deep learning XAI models and perform validation to assess their explainability. What you will learnExplore deep learning frameworks for anomaly detectionMitigate bias to ensure unbiased and ethical analysisIncrease your privacy and regulatory compliance awarenessBuild deep learning anomaly detectors in several domainsCompare intrinsic and post hoc explainability methodsExamine backpropagation and perturbation methodsConduct model-agnostic and model-specific explainability techniquesEvaluate the explainability of your deep learning modelsWho this book is for This book is for anyone who aspires to explore explainable deep learning anomaly detection, tenured data scientists or ML practitioners looking for Explainable AI (XAI) best practices, or business leaders looking to make decisions on trade-off between performance and interpretability of anomaly detection applications. A basic understanding of deep learning and anomaly detection–related topics using Python is recommended to get the most out of this book.

14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019)

14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) PDF Author: Francisco Martínez Álvarez
Publisher: Springer
ISBN: 3030200558
Category : Technology & Engineering
Languages : en
Pages : 617

Get Book Here

Book Description
This book includes 57 papers presented at the SOCO 2019 conference held in the historic city of Seville (Spain), in May 2019. Soft computing represents a set of computational techniques in machine learning, computer science and various engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. The selection of papers was extremely rigorous in order to maintain the high quality of the conference, which featured a number of special sessions, including sessions on: Soft Computing Methods in Manufacturing and Management Systems; Soft Computing Applications in the Field of Industrial and Environmental Enterprises; Optimization, Modeling and Control by Soft Computing Techniques; and Soft Computing in Aerospace, Mechanical and Civil Engineering: New methods and Industrial Applications.