Author: Peter J. Bickel
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 520
Book Description
This classic, time-honored introduction to the theory and practice of statistics modeling and inference reflects the changing focus of contemporary Statistics. Coverage begins with the more general nonparametric point of view and then looks at parametric models as submodels of the nonparametric ones which can be described smoothly by Euclidean parameters. Although some computational issues are discussed, this is very much a book on theory. It relates theory to conceptual and technical issues encountered in practice, viewing theory as suggestive for practice, not prescriptive. It shows readers how assumptions which lead to neat theory may be unrealistic in practice. Statistical Models, Goals, and Performance Criteria. Methods of Estimation. Measures of Performance, Notions of Optimality, and Construction of Optimal Procedures in Simple Situations. Testing Statistical Hypotheses: Basic Theory. Asymptotic Approximations. Multiparameter Estimation, Testing and Confidence Regions. A Review of Basic Probability Theory. More Advanced Topics in Analysis and Probability. Matrix Algebra. For anyone interested in mathematical statistics working in statistics, bio-statistics, economics, computer science, and mathematics.
Selected Topics in Statistical Inference
Author: Manisha Pal
Publisher: Springer Nature
ISBN: 9819725925
Category :
Languages : en
Pages : 153
Book Description
Publisher: Springer Nature
ISBN: 9819725925
Category :
Languages : en
Pages : 153
Book Description
Mathematical Statistics
Author: Peter J. Bickel
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 520
Book Description
This classic, time-honored introduction to the theory and practice of statistics modeling and inference reflects the changing focus of contemporary Statistics. Coverage begins with the more general nonparametric point of view and then looks at parametric models as submodels of the nonparametric ones which can be described smoothly by Euclidean parameters. Although some computational issues are discussed, this is very much a book on theory. It relates theory to conceptual and technical issues encountered in practice, viewing theory as suggestive for practice, not prescriptive. It shows readers how assumptions which lead to neat theory may be unrealistic in practice. Statistical Models, Goals, and Performance Criteria. Methods of Estimation. Measures of Performance, Notions of Optimality, and Construction of Optimal Procedures in Simple Situations. Testing Statistical Hypotheses: Basic Theory. Asymptotic Approximations. Multiparameter Estimation, Testing and Confidence Regions. A Review of Basic Probability Theory. More Advanced Topics in Analysis and Probability. Matrix Algebra. For anyone interested in mathematical statistics working in statistics, bio-statistics, economics, computer science, and mathematics.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 520
Book Description
This classic, time-honored introduction to the theory and practice of statistics modeling and inference reflects the changing focus of contemporary Statistics. Coverage begins with the more general nonparametric point of view and then looks at parametric models as submodels of the nonparametric ones which can be described smoothly by Euclidean parameters. Although some computational issues are discussed, this is very much a book on theory. It relates theory to conceptual and technical issues encountered in practice, viewing theory as suggestive for practice, not prescriptive. It shows readers how assumptions which lead to neat theory may be unrealistic in practice. Statistical Models, Goals, and Performance Criteria. Methods of Estimation. Measures of Performance, Notions of Optimality, and Construction of Optimal Procedures in Simple Situations. Testing Statistical Hypotheses: Basic Theory. Asymptotic Approximations. Multiparameter Estimation, Testing and Confidence Regions. A Review of Basic Probability Theory. More Advanced Topics in Analysis and Probability. Matrix Algebra. For anyone interested in mathematical statistics working in statistics, bio-statistics, economics, computer science, and mathematics.
All of Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Statistical Inference
Author: George Casella
Publisher: CRC Press
ISBN: 1040024025
Category : Mathematics
Languages : en
Pages : 1746
Book Description
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Publisher: CRC Press
ISBN: 1040024025
Category : Mathematics
Languages : en
Pages : 1746
Book Description
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Mathematical Statistics
Author: Peter J. Bickel
Publisher: CRC Press
ISBN: 1498722709
Category : Business & Economics
Languages : en
Pages : 487
Book Description
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o
Publisher: CRC Press
ISBN: 1498722709
Category : Business & Economics
Languages : en
Pages : 487
Book Description
Mathematical Statistics: Basic Ideas and Selected Topics, Volume II presents important statistical concepts, methods, and tools not covered in the authors' previous volume. This second volume focuses on inference in non- and semiparametric models. It not only reexamines the procedures introduced in the first volume from a more sophisticated point o
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Statistical Inference
Author: Vijay K. Rohatgi
Publisher: Courier Corporation
ISBN: 0486136213
Category : Mathematics
Languages : en
Pages : 956
Book Description
This treatment of probability and statistics examines discrete and continuous models, functions of random variables and random vectors, large-sample theory, more. Hundreds of problems (some with solutions). 1984 edition. Includes 144 figures and 35 tables.
Publisher: Courier Corporation
ISBN: 0486136213
Category : Mathematics
Languages : en
Pages : 956
Book Description
This treatment of probability and statistics examines discrete and continuous models, functions of random variables and random vectors, large-sample theory, more. Hundreds of problems (some with solutions). 1984 edition. Includes 144 figures and 35 tables.
Statistical Inference
Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486481581
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book offers a brief course in statistical inference that requires only a basic familiarity with probability and matrix and linear algebra. Ninety problems with solutions make it an ideal choice for self-study as well as a helpful review of a wide-ranging topic with important uses to professionals in business, government, public administration, and other fields. 2011 edition.
Publisher: Courier Corporation
ISBN: 0486481581
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book offers a brief course in statistical inference that requires only a basic familiarity with probability and matrix and linear algebra. Ninety problems with solutions make it an ideal choice for self-study as well as a helpful review of a wide-ranging topic with important uses to professionals in business, government, public administration, and other fields. 2011 edition.
An Introduction to Probability and Statistical Inference
Author: George G. Roussas
Publisher: Academic Press
ISBN: 0128004371
Category : Mathematics
Languages : en
Pages : 624
Book Description
An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual
Publisher: Academic Press
ISBN: 0128004371
Category : Mathematics
Languages : en
Pages : 624
Book Description
An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual
Theoretical Statistics
Author: Robert W. Keener
Publisher: Springer Science & Business Media
ISBN: 0387938397
Category : Mathematics
Languages : en
Pages : 543
Book Description
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Publisher: Springer Science & Business Media
ISBN: 0387938397
Category : Mathematics
Languages : en
Pages : 543
Book Description
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.