Author: Valeriya Akhmedova
Publisher: Springer Nature
ISBN: 3030350894
Category : Science
Languages : en
Pages : 122
Book Description
This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.
Selected Special Functions for Fundamental Physics
Author: Valeriya Akhmedova
Publisher: Springer Nature
ISBN: 3030350894
Category : Science
Languages : en
Pages : 122
Book Description
This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.
Publisher: Springer Nature
ISBN: 3030350894
Category : Science
Languages : en
Pages : 122
Book Description
This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.
Selected Special Functions for Fundamental Physics
Author: Valeriya Akhmedova
Publisher: Springer
ISBN: 9783030350888
Category : Science
Languages : en
Pages : 116
Book Description
This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.
Publisher: Springer
ISBN: 9783030350888
Category : Science
Languages : en
Pages : 116
Book Description
This book presents calculation methods that are used in both mathematical and theoretical physics. These methods will allow readers to work with selected special functions and more generally with differential equations, which are the most frequently used in quantum mechanics, theory of relativity and quantum field theory. The authors explain various approximation methods used to solve differential equations and to estimate integrals. They also address the basics of the relations between differential equations, special functions and representation theory of some of the simplest algebras on the one hand, and fundamental physics on the other. Based on a seminar for graduate physics students, the book offers a compact and quick way to learn about special functions. To gain the most from it, readers should be familiar with the basics of calculus, linear algebra, and complex analysis, as well as the basic methods used to solve differential equations and calculate integrals.
Lectures on Selected Topics in Mathematical Physics
Author: William A. Schwalm
Publisher: Morgan & Claypool Publishers
ISBN: 1681742306
Category : Science
Languages : en
Pages : 67
Book Description
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
Publisher: Morgan & Claypool Publishers
ISBN: 1681742306
Category : Science
Languages : en
Pages : 67
Book Description
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Mathematical Methods For Physics
Author: H. W. Wyld
Publisher: CRC Press
ISBN: 0429978642
Category : Science
Languages : en
Pages : 395
Book Description
This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.
Publisher: CRC Press
ISBN: 0429978642
Category : Science
Languages : en
Pages : 395
Book Description
This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Computation of Special Functions
Author: Shanjie Zhang
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 752
Book Description
Computation of Special Functions is a valuable book/software package containing more than 100 original computer programs for the computation of most special functions currently in use. These include many functions commonly omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike most software packages, this book/disk set gives readers the latitude to modify programs according to the special demands of the sophisticated problems they are working on. The authors provide detailed descriptions of the program's algorithms as well as specific information about each program's internal structure.
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 752
Book Description
Computation of Special Functions is a valuable book/software package containing more than 100 original computer programs for the computation of most special functions currently in use. These include many functions commonly omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike most software packages, this book/disk set gives readers the latitude to modify programs according to the special demands of the sophisticated problems they are working on. The authors provide detailed descriptions of the program's algorithms as well as specific information about each program's internal structure.
Special Functions and Analysis of Differential Equations
Author: Praveen Agarwal
Publisher: CRC Press
ISBN: 1000078566
Category : Mathematics
Languages : en
Pages : 371
Book Description
Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.
Publisher: CRC Press
ISBN: 1000078566
Category : Mathematics
Languages : en
Pages : 371
Book Description
Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.
Partial Differential Equations of Mathematical Physics
Author: S. L. Sobolev
Publisher: Courier Corporation
ISBN: 9780486659640
Category : Science
Languages : en
Pages : 452
Book Description
This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.
Publisher: Courier Corporation
ISBN: 9780486659640
Category : Science
Languages : en
Pages : 452
Book Description
This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.
Special Functions of Mathematics for Engineers
Author: Larry C. Andrews
Publisher: SPIE Press
ISBN: 9780819426161
Category : Mathematics
Languages : en
Pages : 512
Book Description
Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.
Publisher: SPIE Press
ISBN: 9780819426161
Category : Mathematics
Languages : en
Pages : 512
Book Description
Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.