Selected Aspects of Fractional Brownian Motion

Selected Aspects of Fractional Brownian Motion PDF Author: Ivan Nourdin
Publisher: Springer Science & Business Media
ISBN: 884702823X
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved.

Selected Aspects of Fractional Brownian Motion

Selected Aspects of Fractional Brownian Motion PDF Author: Ivan Nourdin
Publisher: Springer Science & Business Media
ISBN: 884702823X
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved.

Normal Approximations with Malliavin Calculus

Normal Approximations with Malliavin Calculus PDF Author: Ivan Nourdin
Publisher: Cambridge University Press
ISBN: 1107017777
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.

Stochastic Calculus for Fractional Brownian Motion and Applications

Stochastic Calculus for Fractional Brownian Motion and Applications PDF Author: Francesca Biagini
Publisher: Springer Science & Business Media
ISBN: 1846287979
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.

Stochastic Calculus and Differential Equations for Physics and Finance

Stochastic Calculus and Differential Equations for Physics and Finance PDF Author: Joseph L. McCauley
Publisher: Cambridge University Press
ISBN: 0521763401
Category : Business & Economics
Languages : en
Pages : 219

Get Book Here

Book Description
Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.

Fractional Brownian Motion

Fractional Brownian Motion PDF Author: Oksana Banna
Publisher: John Wiley & Sons
ISBN: 1786302608
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
This monograph studies the relationships between fractional Brownian motion (fBm) and other processes of more simple form. In particular, this book solves the problem of the projection of fBm onto the space of Gaussian martingales that can be represented as Wiener integrals with respect to a Wiener process. It is proved that there exists a unique martingale closest to fBm in the uniform integral norm. Numerical results concerning the approximation problem are given. The upper bounds of distances from fBm to the different subspaces of Gaussian martingales are evaluated and the numerical calculations are involved. The approximations of fBm by a uniformly convergent series of Lebesgue integrals, semimartingales and absolutely continuous processes are presented. As auxiliary but interesting results, the bounds from below and from above for the coefficient appearing in the representation of fBm via the Wiener process are established and some new inequalities for Gamma functions, and even for trigonometric functions, are obtained.

Stochastic Analysis of Mixed Fractional Gaussian Processes

Stochastic Analysis of Mixed Fractional Gaussian Processes PDF Author: Yuliya Mishura
Publisher: Elsevier
ISBN: 0081023634
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts. - Presents both mixed fractional and sub-fractional Brownian motions - Provides an accessible description for mixed fractional gaussian processes that is ideal for Master's and PhD students - Includes different Hurst indices

Stochastic Calculus for Fractional Brownian Motion and Related Processes

Stochastic Calculus for Fractional Brownian Motion and Related Processes PDF Author: Yuliya Mishura
Publisher: Springer Science & Business Media
ISBN: 3540758720
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.

Stochastic Calculus via Regularizations

Stochastic Calculus via Regularizations PDF Author: Francesco Russo
Publisher: Springer Nature
ISBN: 3031094468
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual ItĂ´ and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.

Fractional Calculus and Fractional Processes with Applications to Financial Economics

Fractional Calculus and Fractional Processes with Applications to Financial Economics PDF Author: Hasan Fallahgoul
Publisher: Academic Press
ISBN: 0128042842
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
Fractional Calculus and Fractional Processes with Applications to Financial Economics presents the theory and application of fractional calculus and fractional processes to financial data. Fractional calculus dates back to 1695 when Gottfried Wilhelm Leibniz first suggested the possibility of fractional derivatives. Research on fractional calculus started in full earnest in the second half of the twentieth century. The fractional paradigm applies not only to calculus, but also to stochastic processes, used in many applications in financial economics such as modelling volatility, interest rates, and modelling high-frequency data. The key features of fractional processes that make them interesting are long-range memory, path-dependence, non-Markovian properties, self-similarity, fractal paths, and anomalous diffusion behaviour. In this book, the authors discuss how fractional calculus and fractional processes are used in financial modelling and finance economic theory. It provides a practical guide that can be useful for students, researchers, and quantitative asset and risk managers interested in applying fractional calculus and fractional processes to asset pricing, financial time-series analysis, stochastic volatility modelling, and portfolio optimization. - Provides the necessary background for the book's content as applied to financial economics - Analyzes the application of fractional calculus and fractional processes from deterministic and stochastic perspectives

Random Walk, Brownian Motion, and Martingales

Random Walk, Brownian Motion, and Martingales PDF Author: Rabi Bhattacharya
Publisher: Springer Nature
ISBN: 303078939X
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.