Seismic Wave Propagation and Scattering in the Heterogenous Earth

Seismic Wave Propagation and Scattering in the Heterogenous Earth PDF Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.

Seismic Wave Propagation and Scattering in the Heterogenous Earth

Seismic Wave Propagation and Scattering in the Heterogenous Earth PDF Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition PDF Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3642230288
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition PDF Author: Haruo Sato
Publisher: Springer
ISBN: 9783642443183
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition PDF Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3642230296
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Seismic Wave Propagation and Scattering in the Heterogeneous Earth

Seismic Wave Propagation and Scattering in the Heterogeneous Earth PDF Author: Haruo Sato
Publisher: Springer
ISBN: 9781461222026
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Focusing on recent developments in the area of seismic wave propagation and scattering, this text combines information from numerous sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials. With the emphasis firmly on the lithosphere, the book includes analyses of observations using the theoretical methods developed. Written for advanced undergraduates and beginning graduates of geophysics and planetary sciences, this is also of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.

Seismic Waves and Sources

Seismic Waves and Sources PDF Author: A. Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 1461258561
Category : Science
Languages : en
Pages : 1127

Get Book Here

Book Description
Earthquakes come and go as they please, leaving behind them trails of destruc tion and casualties. Although their occurrence is little affected by what we do or think, it is the task of earth scientists to keep studying them from all possible angles until ways and means are found to divert, forecast, and eventually control them. In ancient times people were awestruck by singular geophysical events, which were attributed to supernatural powers. It was recognized only in 1760 that earthquakes originated within the earth. A hundred years later, first systematic attempts were made to apply physical principles to study them. During the next century scientists accumulated knowledge about the effects of earthquakes, their geographic patterns, the waves emitted by them, and the internal constitution of the earth. During the past 20 years, seismology has made a tremendous progress, mainly because of the advent of modern computers and improvements in data acquisi tion systems, which are now capable of digital and analog recording of ground motion over a frequency range of five orders of magnitude. These technologic developments have enabled seismologists to make measurements with far greater precision and sophistication than was previously possible. Advanced computational analyses have been applied to high-quality data and elaborate theoretical models have been devised to interpret them. As a result, far reaching advances in our knowledge of the earth's structure and the nature of earthquake sources have occurred.

Encyclopedia of Solid Earth Geophysics

Encyclopedia of Solid Earth Geophysics PDF Author: D.E. James
Publisher: Springer Science & Business Media
ISBN: 0442243669
Category : Science
Languages : en
Pages : 1299

Get Book Here

Book Description
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.

The Seismic Wavefield: Volume 1, Introduction and Theoretical Development

The Seismic Wavefield: Volume 1, Introduction and Theoretical Development PDF Author: B. L. N. Kennett
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.

Modern Global Seismology

Modern Global Seismology PDF Author: Thorne Lay
Publisher: Elsevier
ISBN: 0080536719
Category : Science
Languages : en
Pages : 535

Get Book Here

Book Description
Intended as an introduction to the field, Modern Global Seismology is a complete, self-contained primer on seismology. It features extensive coverage of all related aspects, from observational data through prediction, emphasizing the fundamental theories and physics governing seismic waves--both natural and anthropogenic. Based on thoroughly class-tested material, the text provides a unique perspective on the earths large-scale internal structure and dynamic processes, particularly earthquake sources, and on the application of theory to the dynamic processes of the earths upper skin. Authored by two experts in the field of geophysics. this insightful text is designed for the first-year graduate course in seismology. Exploration seismologists will also find it an invaluable resource on topics such as elastic-wave propagation, seismicinstrumentation, and seismogram analysis useful in interpreting their high-resolution images of structure for oil and mineral resource exploration. - More than 400 illustrations, many from recent research articles, help readers visualize mathematical relationships - 49 Boxed Features explain advanced topics - Provides readers with the most in-depth presentation of earthquake physics available - Contains incisive treatments of seismic waves, waveform evaluation and modeling, and seismotectonics - Provides quantitative treatment of earthquake source mechanics - Contains numerous examples of modern broadband seismic recordings - Fully covers current seismic instruments and networks - Demonstrates modern waveform inversion methods - Includes extensive references for further reading

Fundamentals of Seismic Wave Propagation

Fundamentals of Seismic Wave Propagation PDF Author: Chris Chapman
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646

Get Book Here

Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.