Author: Philippe Gueguen
Publisher: John Wiley & Sons
ISBN: 1118604008
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Guéguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cédric Desprez, Panagiotis Kotronis and Stéphane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Guéguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France
Seismic Vulnerability of Structures
Author: Philippe Gueguen
Publisher: John Wiley & Sons
ISBN: 1118604008
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Guéguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cédric Desprez, Panagiotis Kotronis and Stéphane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Guéguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France
Publisher: John Wiley & Sons
ISBN: 1118604008
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Guéguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cédric Desprez, Panagiotis Kotronis and Stéphane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Guéguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France
Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales
Author: Tiago Miguel Ferreira
Publisher: Woodhead Publishing
ISBN: 0128240725
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales: From Single Buildings to Large-Scale Assessment provides an integrated, multiscale platform for fundamental and applied studies on the seismic vulnerability assessment of civil engineering structures, including buildings with different materials and building typologies. The book shows how various outputs obtained from different scales and layers of assessment (from building scale to the urban area) can be used to outline and implement effective risk mitigation, response and recovery strategies. In addition, it highlights how significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques. The wide variety of construction and structural systems associated with the complex behavior of their materials significantly limits the application of current codes and building standards to the existing building stock, hence this book is a welcomed guide on new construction standards and practices. - Provides the theoretical backgrounds on the most advanced seismic vulnerability assessment approaches at different scales and for most common building typologies - Covers the most common building typologies and the materials they are made from, such as concrete, masonry, steel, timber and raw earth - Presents practical guidelines on how the outputs coming from such approaches can be used to outline effective risk mitigation and emergency planning strategies
Publisher: Woodhead Publishing
ISBN: 0128240725
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales: From Single Buildings to Large-Scale Assessment provides an integrated, multiscale platform for fundamental and applied studies on the seismic vulnerability assessment of civil engineering structures, including buildings with different materials and building typologies. The book shows how various outputs obtained from different scales and layers of assessment (from building scale to the urban area) can be used to outline and implement effective risk mitigation, response and recovery strategies. In addition, it highlights how significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques. The wide variety of construction and structural systems associated with the complex behavior of their materials significantly limits the application of current codes and building standards to the existing building stock, hence this book is a welcomed guide on new construction standards and practices. - Provides the theoretical backgrounds on the most advanced seismic vulnerability assessment approaches at different scales and for most common building typologies - Covers the most common building typologies and the materials they are made from, such as concrete, masonry, steel, timber and raw earth - Presents practical guidelines on how the outputs coming from such approaches can be used to outline effective risk mitigation and emergency planning strategies
Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems
Author: S Tesfamariam
Publisher: Elsevier
ISBN: 0857098985
Category : Science
Languages : en
Pages : 920
Book Description
Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure
Publisher: Elsevier
ISBN: 0857098985
Category : Science
Languages : en
Pages : 920
Book Description
Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure
Reducing the Seismic Vulnerability of Existing Buildings Assessment and Retrofit
Author: Tiago Miguel Ferreira
Publisher: MDPI
ISBN: 3039212575
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
This book is a printed edition of the Special Issue Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit that was published in Buildings
Publisher: MDPI
ISBN: 3039212575
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
This book is a printed edition of the Special Issue Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit that was published in Buildings
Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation
Author:
Publisher: Government Printing Office
ISBN: 9780160926754
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Publisher: Government Printing Office
ISBN: 9780160926754
Category : Business & Economics
Languages : en
Pages : 206
Book Description
The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Seismic Evaluation of Existing Buildings
Author:
Publisher: DIANE Publishing
ISBN: 9781568069920
Category : Technology & Engineering
Languages : en
Pages : 180
Book Description
Provides design professionals & local building officials with a standard methodology to evaluate buildings of different types & occupancies in areas of different seismicity throughout the U.S.
Publisher: DIANE Publishing
ISBN: 9781568069920
Category : Technology & Engineering
Languages : en
Pages : 180
Book Description
Provides design professionals & local building officials with a standard methodology to evaluate buildings of different types & occupancies in areas of different seismicity throughout the U.S.
Masonry Construction in Active Seismic Regions
Author: Rajesh Rupakhety
Publisher: Woodhead Publishing
ISBN: 0128231963
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
During earthquakes, masonry buildings are the most affected, and consequently, damage to these buildings leads to massive loss of life and property. Masonry buildings comprise probably the greatest share of overall housing stock, and in turn, understanding their performance during earthquakes is a pivotal problem in seismic regions. Masonry Construction in Active Seismic Regions presents details on the kinds of masonry building found in seismic regions of the world. The title describes interventions, such as retrofitted solutions, dynamic identification, and improved construction after earthquakes, that are equally applicable to regions of moderate and high seismicity. The book covers representative masonry buildings from active seismic regions, the material properties of masonry construction, numerical modelling techniques and computational advances, seismic performance of non-engineered masonry buildings, resilience in typical construction, retrofitting, and the cultural values and structural characterization of heritage masonry buildings in active seismic regions. This book is unique in its global and systematic coverage of masonry construction in seismic regions. - Identifies the material properties of masonry construction from a seismic perspective - Covers representative masonry buildings from active seismic regions, providing a benchmark to understand existing building stocks - Provides numerical modelling techniques and reviews computational advances, including a large test database - Details the seismic performance of non-engineered masonry buildings, as well as the cultural values and structural characterisation of heritage masonry constructions - Analyses typical or vernacular constructions which have earthquake resilient features, such as Dhajji-Dewari, Borbone, Pombalino, and Himis
Publisher: Woodhead Publishing
ISBN: 0128231963
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
During earthquakes, masonry buildings are the most affected, and consequently, damage to these buildings leads to massive loss of life and property. Masonry buildings comprise probably the greatest share of overall housing stock, and in turn, understanding their performance during earthquakes is a pivotal problem in seismic regions. Masonry Construction in Active Seismic Regions presents details on the kinds of masonry building found in seismic regions of the world. The title describes interventions, such as retrofitted solutions, dynamic identification, and improved construction after earthquakes, that are equally applicable to regions of moderate and high seismicity. The book covers representative masonry buildings from active seismic regions, the material properties of masonry construction, numerical modelling techniques and computational advances, seismic performance of non-engineered masonry buildings, resilience in typical construction, retrofitting, and the cultural values and structural characterization of heritage masonry buildings in active seismic regions. This book is unique in its global and systematic coverage of masonry construction in seismic regions. - Identifies the material properties of masonry construction from a seismic perspective - Covers representative masonry buildings from active seismic regions, providing a benchmark to understand existing building stocks - Provides numerical modelling techniques and reviews computational advances, including a large test database - Details the seismic performance of non-engineered masonry buildings, as well as the cultural values and structural characterisation of heritage masonry constructions - Analyses typical or vernacular constructions which have earthquake resilient features, such as Dhajji-Dewari, Borbone, Pombalino, and Himis
Seismic Evaluation and Rehabilitation of Structures
Author: Alper Ilki
Publisher: Springer
ISBN: 9783319004594
Category : Science
Languages : en
Pages : 497
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
Publisher: Springer
ISBN: 9783319004594
Category : Science
Languages : en
Pages : 497
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
The Seismic Design Handbook
Author: Farzad Naeim
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Publisher: Springer Science & Business Media
ISBN: 1461516935
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
This handbook contains up-to-date existing structures, computer applications, and infonnation on planning, analysis, and design seismic design of wood structures. A new and very useful feature of this edition of earthquake-resistant building structures. Its intention is to provide engineers, architects, is the inclusion of a companion CD-ROM disc developers, and students of structural containing the complete digital version of the handbook itself and the following very engineering and architecture with authoritative, yet practical, design infonnation. It represents important publications: an attempt to bridge the persisting gap between l. UBC-IBC (1997-2000) Structural advances in the theories and concepts of Comparisons and Cross References, ICBO, earthquake-resistant design and their 2000. implementation in seismic design practice. 2. NEHRP Guidelines for the Seismic The distinguished panel of contributors is Rehabilitation of Buildings, FEMA-273, Federal Emergency Management Agency, composed of 22 experts from industry and universities, recognized for their knowledge and 1997. extensive practical experience in their fields. 3. NEHRP Commentary on the Guidelinesfor They have aimed to present clearly and the Seismic Rehabilitation of Buildings, FEMA-274, Federal Emergency concisely the basic principles and procedures pertinent to each subject and to illustrate with Management Agency, 1997. practical examples the application of these 4. NEHRP Recommended Provisions for principles and procedures in seismic design Seismic Regulations for New Buildings and practice. Where applicable, the provisions of Older Structures, Part 1 - Provisions, various seismic design standards such as mc FEMA-302, Federal Emergency 2000, UBC-97, FEMA-273/274 and ATC-40 Management Agency, 1997.
Numerical Modeling of Masonry and Historical Structures
Author: Bahman Ghiassi
Publisher: Woodhead Publishing
ISBN: 0081024401
Category : Technology & Engineering
Languages : en
Pages : 819
Book Description
Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. - Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures - Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures - Follows a theory to practice approach
Publisher: Woodhead Publishing
ISBN: 0081024401
Category : Technology & Engineering
Languages : en
Pages : 819
Book Description
Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. - Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures - Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures - Follows a theory to practice approach