Retrofitting of Concrete Structures by Externally Bonded FRPs, With Emphasis on Seismic Applications

Retrofitting of Concrete Structures by Externally Bonded FRPs, With Emphasis on Seismic Applications PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940758
Category : Technology & Engineering
Languages : en
Pages : 234

Get Book Here

Book Description
fib Bulletin 35 is the first bulletin to publish documentation from an fib short course. These courses are held worldwide and cover advanced knowledge of structural concrete in general, or specific topics. They are organized by fib and given by internationally recognized experts in fib, often supplemented with local experts active in fib. They are based on the knowledge and expertise from fib's ten Commissions and nearly fifty Task Groups. fib Bulletin 35 presents the course materials developed for the short course "Retrofitting of Concrete Structures through Externally Bonded FRP, with emphasis on Seismic Applications", given in Ankara and Istanbul in June 2005. The course drew on expertise both from outside Turkey and from the large pool of local experts on this subject. In most countries of the world, the building stock is ageing and needs continuous maintenance or repair. Moreover, the majority of existing constructions are deficient in the light of current knowledge and design codes. The problem of structural deficiency of existing constructions is especially acute in seismic regions, as, even there, seismic design of structures is relatively recent. The direct and indirect costs of demolition and reconstruction of structurally deficient constructions are often prohibitive; furthermore they entail a substantial waste of natural resources and energy. Therefore, structural retrofitting is becoming increasingly widespread throughout the world. Externally bonded Fibre Reinforced Polymers (FRPs) are rapidly becoming the technique of choice for structural retrofitting. They are cleaner and easier to apply than conventional retrofitting techniques, reduce disruption to the occupancy and operation of the facility, do not generate debris or waste, and reduce health and accident hazards at the construction site as well as noise and air pollution in the surroundings. fib Bulletin 35 gives state-of-the-art coverage of retrofitting through FRPs and presents relevant provisions from three recent standardisation milestones: EN 1998-3:2005 "Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings", the 2005 Draft of the Turkish seismic design code, and the Italian regulatory document CNR-DT 200/04, "Instructions for Design, Execution and Control of Strengthening Interventions by Means of Fibre-Reinforced Composites" (2004).

Retrofitting of Concrete Structures by Externally Bonded FRPs, With Emphasis on Seismic Applications

Retrofitting of Concrete Structures by Externally Bonded FRPs, With Emphasis on Seismic Applications PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940758
Category : Technology & Engineering
Languages : en
Pages : 234

Get Book Here

Book Description
fib Bulletin 35 is the first bulletin to publish documentation from an fib short course. These courses are held worldwide and cover advanced knowledge of structural concrete in general, or specific topics. They are organized by fib and given by internationally recognized experts in fib, often supplemented with local experts active in fib. They are based on the knowledge and expertise from fib's ten Commissions and nearly fifty Task Groups. fib Bulletin 35 presents the course materials developed for the short course "Retrofitting of Concrete Structures through Externally Bonded FRP, with emphasis on Seismic Applications", given in Ankara and Istanbul in June 2005. The course drew on expertise both from outside Turkey and from the large pool of local experts on this subject. In most countries of the world, the building stock is ageing and needs continuous maintenance or repair. Moreover, the majority of existing constructions are deficient in the light of current knowledge and design codes. The problem of structural deficiency of existing constructions is especially acute in seismic regions, as, even there, seismic design of structures is relatively recent. The direct and indirect costs of demolition and reconstruction of structurally deficient constructions are often prohibitive; furthermore they entail a substantial waste of natural resources and energy. Therefore, structural retrofitting is becoming increasingly widespread throughout the world. Externally bonded Fibre Reinforced Polymers (FRPs) are rapidly becoming the technique of choice for structural retrofitting. They are cleaner and easier to apply than conventional retrofitting techniques, reduce disruption to the occupancy and operation of the facility, do not generate debris or waste, and reduce health and accident hazards at the construction site as well as noise and air pollution in the surroundings. fib Bulletin 35 gives state-of-the-art coverage of retrofitting through FRPs and presents relevant provisions from three recent standardisation milestones: EN 1998-3:2005 "Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings", the 2005 Draft of the Turkish seismic design code, and the Italian regulatory document CNR-DT 200/04, "Instructions for Design, Execution and Control of Strengthening Interventions by Means of Fibre-Reinforced Composites" (2004).

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites PDF Author: L C Hollaway
Publisher: Elsevier
ISBN: 1845694899
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance.The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies.With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. - Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures - Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening - Covers practical considerations including material behaviour, structural design and quality assurance

Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges PDF Author: M. J. N. Priestley
Publisher: John Wiley & Sons
ISBN: 9780471579984
Category : Technology & Engineering
Languages : en
Pages : 704

Get Book Here

Book Description
Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

FRP

FRP PDF Author: J. G. Teng
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book Here

Book Description
Fibre-reinforced polymer (FRP) composites are used to strengthen reinforced concrete (RC) structures. A large amount of research now exists on this. This book brings together all existing research into one volume.

Advances in Earthquake Engineering for Urban Risk Reduction

Advances in Earthquake Engineering for Urban Risk Reduction PDF Author: S. Tanvir Wasti
Publisher: Springer Science & Business Media
ISBN: 1402045719
Category : Science
Languages : en
Pages : 563

Get Book Here

Book Description
Earthquakes affecting urban areas can lead to catastrophic situations and hazard mitigation requires preparatory measures at all levels. Structural assessment is the diagnosis of the seismic health of buildings. Assessment is the prelude to decisions about rehabilitation or even demolition. The scale of the problem in dense urban settings brings about a need for macro seismic appraisal procedures because large numbers of existing buildings do not conform to the increased requirements of new earthquake codes and specifications or have other deficiencies. It is the vulnerable buildings - liable to cause damage and loss of life - that need immediate attention and urgent appraisal in order to decide if structural rehabilitation and upgrading are feasible. Current economic, efficient and occupant-friendly rehabilitation techniques vary widely and include the application either of precast concrete panels or layers, strips and patches of fiber reinforced polymers (FRP) in strategic locations. The papers in this book, many by renowned authorities in earthquake engineering, chart new and vital directions of research and application in the assessment and rehabilitation of buildings in seismic regions. While several papers discuss the probabilistic prediction and quantification of structural damage, others present approaches related with the in-situ and occupant friendly upgrading of buildings and propose both economical and practical techniques to address the problem.

Seismic Design of Reinforced Concrete and Masonry Buildings

Seismic Design of Reinforced Concrete and Masonry Buildings PDF Author: Thomas Paulay
Publisher: Wiley-Interscience
ISBN: 9780471549154
Category : Technology & Engineering
Languages : en
Pages : 768

Get Book Here

Book Description
Emphasizes actual structural design, not analysis, of multistory buildings for seismic resistance. Strong emphasis is placed on specific detailing requirements for construction. Fundamental design principles are presented to create buildings that respond to a wide range of potential seismic forces, which are illustrated by numerous detailed examples. The discussion includes the design of reinforced concrete ductile frames, structural walls, dual systems, reinforced masonry structures, buildings with restricted ductility and foundation walls. In addition to the examples, full design calculations are given for three prototype structures.

Composites for Construction

Composites for Construction PDF Author: Lawrence C. Bank
Publisher: John Wiley & Sons
ISBN: 0471681261
Category : Technology & Engineering
Languages : en
Pages : 572

Get Book Here

Book Description
The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process

Structural Performance of Masonry Walls Under Compression and Flexure

Structural Performance of Masonry Walls Under Compression and Flexure PDF Author: S. G. Fattal
Publisher:
ISBN:
Category : Masonry
Languages : en
Pages : 72

Get Book Here

Book Description


ACI 440. 2R-17 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures

ACI 440. 2R-17 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures PDF Author: ACI Committee 440
Publisher:
ISBN: 9781945487590
Category : Fiber-reinforced concrete
Languages : en
Pages : 110

Get Book Here

Book Description


10th International Conference on FRP Composites in Civil Engineering

10th International Conference on FRP Composites in Civil Engineering PDF Author: Alper Ilki
Publisher: Springer Nature
ISBN: 3030881660
Category : Technology & Engineering
Languages : en
Pages : 2516

Get Book Here

Book Description
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.