Author: Enru Liu
Publisher:
ISBN: 9789073834408
Category : Rock deformation
Languages : en
Pages : 279
Book Description
During the last three decades, seismic anisotropy has evolved from a purely academic research topic into applications in the mainstream of applied geophysics. Today, nobody doubts that the earth is anisotropic and most (if not all) hydrocarbon reservoirs are anisotropic. Since shale accounts for 70% of sedimentary basins and fractures exist in all reservoirs, seismic anisotropy may be even more extensive than we think. Taking anisotropy into account in seismic processing has improved the quality of seismic images, even though it makes seismic processing more challenging since additional parameters are needed. At the same time, fracture characterization using the concept of seismic anisotropy has added value in reservoir characterization, reservoir management, and has increased recovery and optimized well locations. This book and the associated course provide an introduction to the fundamental concepts of seismic fracture characterization by introducing seismic anisotropy, equivalent-medium representation theories of fractured rock and methodologies for extracting fracture parameters from seismic data. We focus on practical applications using extensive field data examples. Includes cast studies demonstrating the applicability, workflow and limitations of this technologyContains physical laboratory 3D experiments where fracture distributions are known, a Middle East fractured carbonate reservoir and a fractured tight gas reservoir. Builds discrete fracture network models incorporating all data. These models should not only be geologically consistent but also geophysically and geomechanically consistent, so that the models can be used to forecast the behaviour and performance of fractured reservoirs.
Seismic Fracture Characterization
Author: Enru Liu
Publisher:
ISBN: 9789073834408
Category : Rock deformation
Languages : en
Pages : 279
Book Description
During the last three decades, seismic anisotropy has evolved from a purely academic research topic into applications in the mainstream of applied geophysics. Today, nobody doubts that the earth is anisotropic and most (if not all) hydrocarbon reservoirs are anisotropic. Since shale accounts for 70% of sedimentary basins and fractures exist in all reservoirs, seismic anisotropy may be even more extensive than we think. Taking anisotropy into account in seismic processing has improved the quality of seismic images, even though it makes seismic processing more challenging since additional parameters are needed. At the same time, fracture characterization using the concept of seismic anisotropy has added value in reservoir characterization, reservoir management, and has increased recovery and optimized well locations. This book and the associated course provide an introduction to the fundamental concepts of seismic fracture characterization by introducing seismic anisotropy, equivalent-medium representation theories of fractured rock and methodologies for extracting fracture parameters from seismic data. We focus on practical applications using extensive field data examples. Includes cast studies demonstrating the applicability, workflow and limitations of this technologyContains physical laboratory 3D experiments where fracture distributions are known, a Middle East fractured carbonate reservoir and a fractured tight gas reservoir. Builds discrete fracture network models incorporating all data. These models should not only be geologically consistent but also geophysically and geomechanically consistent, so that the models can be used to forecast the behaviour and performance of fractured reservoirs.
Publisher:
ISBN: 9789073834408
Category : Rock deformation
Languages : en
Pages : 279
Book Description
During the last three decades, seismic anisotropy has evolved from a purely academic research topic into applications in the mainstream of applied geophysics. Today, nobody doubts that the earth is anisotropic and most (if not all) hydrocarbon reservoirs are anisotropic. Since shale accounts for 70% of sedimentary basins and fractures exist in all reservoirs, seismic anisotropy may be even more extensive than we think. Taking anisotropy into account in seismic processing has improved the quality of seismic images, even though it makes seismic processing more challenging since additional parameters are needed. At the same time, fracture characterization using the concept of seismic anisotropy has added value in reservoir characterization, reservoir management, and has increased recovery and optimized well locations. This book and the associated course provide an introduction to the fundamental concepts of seismic fracture characterization by introducing seismic anisotropy, equivalent-medium representation theories of fractured rock and methodologies for extracting fracture parameters from seismic data. We focus on practical applications using extensive field data examples. Includes cast studies demonstrating the applicability, workflow and limitations of this technologyContains physical laboratory 3D experiments where fracture distributions are known, a Middle East fractured carbonate reservoir and a fractured tight gas reservoir. Builds discrete fracture network models incorporating all data. These models should not only be geologically consistent but also geophysically and geomechanically consistent, so that the models can be used to forecast the behaviour and performance of fractured reservoirs.
Seismic Attributes for Prospect Identification and Reservoir Characterization
Author: Satinder Chopra
Publisher: SEG Books
ISBN: 1560801417
Category : Science
Languages : en
Pages : 474
Book Description
Introducing the physical basis, mathematical implementation, and geologic expression of modern volumetric attributes including coherence, dip/azimuth, curvature, amplitude gradients, seismic textures, and spectral decomposition, the authors demonstrate the importance of effective colour display and sensitivity to seismic acquisition and processing.
Publisher: SEG Books
ISBN: 1560801417
Category : Science
Languages : en
Pages : 474
Book Description
Introducing the physical basis, mathematical implementation, and geologic expression of modern volumetric attributes including coherence, dip/azimuth, curvature, amplitude gradients, seismic textures, and spectral decomposition, the authors demonstrate the importance of effective colour display and sensitivity to seismic acquisition and processing.
Seismology of Azimuthally Anisotropic Media and Seismic Fracture Characterization
Author: I. D. T︠S︡vankin
Publisher: SEG Books
ISBN: 1560802286
Category : Nature
Languages : en
Pages : 512
Book Description
Presents an analysis of seismic signatures for azimuthally anisotropic media and shows anisotropic inversion/processing methods for wide-azimuth reflection data and VSP surveys. The focus is kinematic parameter-estimation techniques; the prestack amplitudes section includes AVO and attenuation coefficients; field examples are included.
Publisher: SEG Books
ISBN: 1560802286
Category : Nature
Languages : en
Pages : 512
Book Description
Presents an analysis of seismic signatures for azimuthally anisotropic media and shows anisotropic inversion/processing methods for wide-azimuth reflection data and VSP surveys. The focus is kinematic parameter-estimation techniques; the prestack amplitudes section includes AVO and attenuation coefficients; field examples are included.
Rock Fractures and Fluid Flow
Author: Committee on Fracture Characterization and Fluid Flow
Publisher: National Academies Press
ISBN: 0309563488
Category : Science
Languages : en
Pages : 568
Book Description
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Publisher: National Academies Press
ISBN: 0309563488
Category : Science
Languages : en
Pages : 568
Book Description
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.
Seismic Signatures and Analysis of Reflection Data in Anisotropic Media
Author: I. Tsvankin
Publisher: Elsevier
ISBN: 9780080446189
Category : Science
Languages : en
Pages : 472
Book Description
Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media
Publisher: Elsevier
ISBN: 9780080446189
Category : Science
Languages : en
Pages : 472
Book Description
Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media
Seismic Characterization of Carbonate Platforms and Reservoirs
Author: J. Hendry
Publisher: Geological Society of London
ISBN: 1786205394
Category : Science
Languages : en
Pages : 293
Book Description
Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells. This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.
Publisher: Geological Society of London
ISBN: 1786205394
Category : Science
Languages : en
Pages : 293
Book Description
Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells. This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.
Characterization, Modeling, Monitoring, and Remediation of Fractured Rock
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177
Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177
Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.
Fracture and In-situ Stress Characterization of Hydrocarbon Reservoirs
Author: Geological Society of London
Publisher: Geological Society of London
ISBN: 9781862391307
Category : Nature
Languages : en
Pages : 230
Book Description
Publisher: Geological Society of London
ISBN: 9781862391307
Category : Nature
Languages : en
Pages : 230
Book Description
Induced Seismicity Potential in Energy Technologies
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309253705
Category : Science
Languages : en
Pages : 238
Book Description
In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention. Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them. Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.
Publisher: National Academies Press
ISBN: 0309253705
Category : Science
Languages : en
Pages : 238
Book Description
In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention. Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them. Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.
3C Seismic and VSP: Converted waves and vector wavefield applications
Author: James Gaiser
Publisher: SEG Books
ISBN: 1560803355
Category : Science
Languages : en
Pages : 637
Book Description
3C seismic applications provide enhanced rock property characterization of the reservoir that can complement P-wave methods. Continued interest in converted P- to S-waves (PS-waves) and vertical seismic profiles (VSPs) has resulted in the steady development of advanced vector wavefield techniques. PS-wave images along with VSP data can be used to help P-wave interpretation of structure in gas obscured zones, of elastic and fluid properties for lithology discrimination from S-wave impedance and density inversion in unconventional reservoirs, and of fracture characterization and stress monitoring from S-wave birefringence (splitting) analysis. The book, which accompanies the 2016 SEG Distinguished Instructor Short Course, presents an overview of 3C seismic theory and practical application: from fundamentals of PS-waves and VSPs, through to acquisition and processing including interpretation techniques. The emphasis is on unique aspects of vector wavefields, anisotropy, and the important relationships that unify S-waves and P-waves. Various applications and case studies demonstrate image benefits from PS-waves, elastic properties and fluid discrimination from joint inversion of amplitude variations with offset/angle (AVO/A), and VSP methods for anisotropic velocity model building and improved reservoir imaging. The book will be of interest to geophysicists, geologists, and engineers, especially those involved with or considering the use of AVO/A inversion, fracture/stress characterization analyses, or interpretation in gas-obscured reservoirs.
Publisher: SEG Books
ISBN: 1560803355
Category : Science
Languages : en
Pages : 637
Book Description
3C seismic applications provide enhanced rock property characterization of the reservoir that can complement P-wave methods. Continued interest in converted P- to S-waves (PS-waves) and vertical seismic profiles (VSPs) has resulted in the steady development of advanced vector wavefield techniques. PS-wave images along with VSP data can be used to help P-wave interpretation of structure in gas obscured zones, of elastic and fluid properties for lithology discrimination from S-wave impedance and density inversion in unconventional reservoirs, and of fracture characterization and stress monitoring from S-wave birefringence (splitting) analysis. The book, which accompanies the 2016 SEG Distinguished Instructor Short Course, presents an overview of 3C seismic theory and practical application: from fundamentals of PS-waves and VSPs, through to acquisition and processing including interpretation techniques. The emphasis is on unique aspects of vector wavefields, anisotropy, and the important relationships that unify S-waves and P-waves. Various applications and case studies demonstrate image benefits from PS-waves, elastic properties and fluid discrimination from joint inversion of amplitude variations with offset/angle (AVO/A), and VSP methods for anisotropic velocity model building and improved reservoir imaging. The book will be of interest to geophysicists, geologists, and engineers, especially those involved with or considering the use of AVO/A inversion, fracture/stress characterization analyses, or interpretation in gas-obscured reservoirs.