Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response

Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response PDF Author: Comité euro-international du béton
Publisher: Thomas Telford
ISBN: 9780727726414
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
This detailed guide is designed to enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes.

Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response

Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response PDF Author: Comité euro-international du béton
Publisher: Thomas Telford
ISBN: 9780727726414
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
This detailed guide is designed to enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes.

Seismic design of reinforced concrete structures for controlled inelastic response design concepts

Seismic design of reinforced concrete structures for controlled inelastic response design concepts PDF Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883940355
Category : Technology & Engineering
Languages : en
Pages : 213

Get Book Here

Book Description


Seismic design of reinforced concrete structures for controlled inelastic response : design concepts

Seismic design of reinforced concrete structures for controlled inelastic response : design concepts PDF Author:
Publisher:
ISBN: 9780727735461
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Displacement-based Seismic Design of Reinforced Concrete Buildings

Displacement-based Seismic Design of Reinforced Concrete Buildings PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940659
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.

Seismic Design of Reinforced and Precast Concrete Buildings

Seismic Design of Reinforced and Precast Concrete Buildings PDF Author: Robert E. Englekirk
Publisher: John Wiley & Sons
ISBN: 9780471081227
Category : Technology & Engineering
Languages : en
Pages : 856

Get Book Here

Book Description
* Presents the basics of seismic-resistant design of concrete structures. * Provides a major focus on the seismic design of precast bracing systems.

Seismic Design of Reinforced Concrete Buildings

Seismic Design of Reinforced Concrete Buildings PDF Author: Prospero Dionisio Bernal
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 384

Get Book Here

Book Description


Seismic Performance of Concrete Buildings

Seismic Performance of Concrete Buildings PDF Author: Liviu Crainic
Publisher: CRC Press
ISBN: 0415631866
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthquake engineering can be applied to seismic analysis and design of reinforced concrete buildings. The book starts with an up-to-date presentation of fundamental aspects of reinforced concrete behavior quantified through constitutive laws for monotonic and hysteretic loading. Basic concepts of post-elastic analysis like plastic hinge, plastic length, fiber models, and stable and unstable hysteretic behaviour are, accordingly, defined and commented upon. For a deeper understanding of seismic design philosophy and of static and dynamic post-elastic analysis, seismic behavior of different types of reinforced concrete structures (frames, walls) is examined in detail. Next, up-to-date methods for analysis and design are presented. The powerful concept of structural system is defined and systematically used to explain the response to seismic activity, as well as the procedures for analysis and detailing of common building structures. Several case studies are presented. The book is not code-oriented. The structural design codes are subject to constant reevaluation and updating. Rather than presenting code provisions, this book offers a coherent system of notions, concepts and methods, which facilitate understanding and application of any design code. The content of this book is based mainly on the authors’ personal experience which is a combination of their teaching and research activity as well as their work in the private sector as structural designers. The work will serve to help students and researchers, as well as structural designers to better understand the fundamental aspects of behavior and analysis of reinforced concrete structures and accordingly to gain knowledge that will ensure a sound design of buildings.

Bulletin d'information

Bulletin d'information PDF Author:
Publisher:
ISBN:
Category : Cement
Languages : en
Pages : 346

Get Book Here

Book Description


Seismic Design for Reinforced Concrete Structures

Seismic Design for Reinforced Concrete Structures PDF Author: Comite Euro International Du Beton
Publisher: Thomas Telford Publishing
ISBN: 9780727735461
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This detailed guide will enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes. For a structure to remain elastic under its design seismic action, typically associated with a 10% exceedance probability in 50 years, it has to be designed for lateral forces with magnitude in the order of 50% or more of its weight. Although technically feasible, designing a structure to respond elastically to its design seismic action is economically prohibitive. It is also completely unnecessary, as the earthquake is a dynamic action, representing for a structure a certain total energy input and a demand to tolerate a certain level of displacement and deformation, but not a demand to withstand specific forces. Therefore, seismic design codes allow the development of significant inelastic response under the design seismic action, provided that the magnitude of inelastic deformations does not endanger the integrity of the individual members and of the structure as a whole. The rapid development which has occurred in seismic codes has left a need to review the theoretical framework underlying the process of modern seismic design of reinforced concrete, if for no other reason than to make it more accessible and to explain its logic to those outside the small circle of experts. This design guide aims to satisfy this need in a pragmatic way. The book begins by outlining, comparing and contrasting the approaches taken by four regional codes (New Zealand, USA, Europe and Japan). Next follows a chapter on reliability-based system analysis which demonstrates that the problem of seismic design can be theoretically formulated in a comprehensive way which can provide results of practical value. The main part of the guide is devoted to practical issues relating to the measurement of seismic performance and case reports. The detailed discussions provided will enable the interested reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes. The final chapter on the assessment of existing buildings covers a crucial topic for the future of earthquake engineering.

Modeling of Inelastic Behavior of RC Structures Under Seismic Loads

Modeling of Inelastic Behavior of RC Structures Under Seismic Loads PDF Author: P. Benson Shing
Publisher: ASCE Publications
ISBN: 9780784474969
Category : Technology & Engineering
Languages : en
Pages : 636

Get Book Here

Book Description
Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.