Second Order Elliptic Equations and Elliptic Systems

Second Order Elliptic Equations and Elliptic Systems PDF Author: Ya-Zhe Chen
Publisher: American Mathematical Soc.
ISBN: 0821819240
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.

Second Order Elliptic Equations and Elliptic Systems

Second Order Elliptic Equations and Elliptic Systems PDF Author: Ya-Zhe Chen
Publisher: American Mathematical Soc.
ISBN: 0821819240
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
There are two parts to the book. In the first part, a complete introduction of various kinds of a priori estimate methods for the Dirichlet problem of second order elliptic partial differential equations is presented. In the second part, the existence and regularity theories of the Dirichlet problem for linear and nonlinear second order elliptic partial differential systems are introduced. The book features appropriate materials and is an excellent textbook for graduate students. The volume is also useful as a reference source for undergraduate mathematics majors, graduate students, professors, and scientists.

Direct Methods in the Theory of Elliptic Equations

Direct Methods in the Theory of Elliptic Equations PDF Author: Jindrich Necas
Publisher: Springer Science & Business Media
ISBN: 364210455X
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
Nečas’ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Nečas’ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library. The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame’s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.

Second Order Elliptic Equations and Elliptic Systems

Second Order Elliptic Equations and Elliptic Systems PDF Author: Yazhe Chen
Publisher:
ISBN: 9781470445898
Category : Differential equations, Elliptic
Languages : en
Pages :

Get Book Here

Book Description


Nonlinear Second Order Elliptic Equations Involving Measures

Nonlinear Second Order Elliptic Equations Involving Measures PDF Author: Moshe Marcus
Publisher: Walter de Gruyter
ISBN: 3110305313
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.

Periodic Homogenization of Elliptic Systems

Periodic Homogenization of Elliptic Systems PDF Author: Zhongwei Shen
Publisher: Springer
ISBN: 3319912143
Category : Mathematics
Languages : en
Pages : 295

Get Book Here

Book Description
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.

Second Order Equations of Elliptic and Parabolic Type

Second Order Equations of Elliptic and Parabolic Type PDF Author: E. M. Landis
Publisher: American Mathematical Soc.
ISBN: 9780821897812
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
Most books on elliptic and parabolic equations emphasize existence and uniqueness of solutions. By contrast, this book focuses on the qualitative properties of solutions. In addition to the discussion of classical results for equations with smooth coefficients (Schauder estimates and the solvability of the Dirichlet problem for elliptic equations; the Dirichlet problem for the heat equation), the book describes properties of solutions to second order elliptic and parabolic equations with measurable coefficients near the boundary and at infinity. The book presents a fine elementary introduction to the theory of elliptic and parabolic equations of second order. The precise and clear exposition is suitable for graduate students as well as for research mathematicians who want to get acquainted with this area of the theory of partial differential equations.

Linear Second Order Elliptic Operators

Linear Second Order Elliptic Operators PDF Author: Julian Lopez-gomez
Publisher: World Scientific Publishing Company
ISBN: 9814440264
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
The main goal of the book is to provide a comprehensive and self-contained proof of the, relatively recent, theorem of characterization of the strong maximum principle due to Molina-Meyer and the author, published in Diff. Int. Eqns. in 1994, which was later refined by Amann and the author in a paper published in J. of Diff. Eqns. in 1998. Besides this characterization has been shown to be a pivotal result for the development of the modern theory of spatially heterogeneous nonlinear elliptic and parabolic problems; it has allowed us to update the classical theory on the maximum and minimum principles by providing with some extremely sharp refinements of the classical results of Hopf and Protter-Weinberger. By a celebrated result of Berestycki, Nirenberg and Varadhan, Comm. Pure Appl. Maths. in 1994, the characterization theorem is partially true under no regularity constraints on the support domain for Dirichlet boundary conditions.Instead of encyclopedic generality, this book pays special attention to completeness, clarity and transparency of its exposition so that it can be taught even at an advanced undergraduate level. Adopting this perspective, it is a textbook; however, it is simultaneously a research monograph about the maximum principle, as it brings together for the first time in the form of a book, the most paradigmatic classical results together with a series of recent fundamental results scattered in a number of independent papers by the author of this book and his collaborators.Chapters 3, 4, and 5 can be delivered as a classical undergraduate, or graduate, course in Hilbert space techniques for linear second order elliptic operators, and Chaps. 1 and 2 complete the classical results on the minimum principle covered by the paradigmatic textbook of Protter and Weinberger by incorporating some recent classification theorems of supersolutions by Walter, 1989, and the author, 2003. Consequently, these five chapters can be taught at an undergraduate, or graduate, level. Chapters 6 and 7 study the celebrated theorem of Krein-Rutman and infer from it the characterizations of the strong maximum principle of Molina-Meyer and Amann, in collaboration with the author, which have been incorporated to a textbook by the first time here, as well as the results of Chaps. 8 and 9, polishing some recent joint work of Cano-Casanova with the author. Consequently, the second half of the book consists of a more specialized monograph on the maximum principle and the underlying principal eigenvalues.

Elliptic Partial Differential Equations of Second Order

Elliptic Partial Differential Equations of Second Order PDF Author: David Gilbarg
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures". Newsletter, New Zealand Mathematical Society, 1985 "Primarily addressed to graduate students this elegant book is accessible and useful to a broad spectrum of applied mathematicians". Revue Roumaine de Mathématiques Pures et Appliquées,1985

Elliptic Partial Differential Equations

Elliptic Partial Differential Equations PDF Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821853139
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) PDF Author: Kari Astala
Publisher: Princeton University Press
ISBN: 9780691137773
Category : Mathematics
Languages : en
Pages : 708

Get Book Here

Book Description
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.