Second Law Analysis of Premixed Compression Ignition Combustion in a Diesel Engine Using a Thermodynamic Engine Cycle Simulation

Second Law Analysis of Premixed Compression Ignition Combustion in a Diesel Engine Using a Thermodynamic Engine Cycle Simulation PDF Author: Sushil Shreekant Oak
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.

Second Law Analysis of Premixed Compression Ignition Combustion in a Diesel Engine Using a Thermodynamic Engine Cycle Simulation

Second Law Analysis of Premixed Compression Ignition Combustion in a Diesel Engine Using a Thermodynamic Engine Cycle Simulation PDF Author: Sushil Shreekant Oak
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.

Exergy as a Second Law Analysis Parameter in Thermodynamic Diesel Engine Cycle Simulation

Exergy as a Second Law Analysis Parameter in Thermodynamic Diesel Engine Cycle Simulation PDF Author: Sanath V. Kumar
Publisher:
ISBN:
Category : Diesel motor
Languages : en
Pages : 390

Get Book Here

Book Description


Development of a Partially Premixed Combustion Model for a Diesel Engine Using Multiple Injection Strategies

Development of a Partially Premixed Combustion Model for a Diesel Engine Using Multiple Injection Strategies PDF Author: Rene Thygesen
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832530932
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
In order to fulfil future emissions legislations, new combustion systems are to be investigated. One way of improving exhaust emissions is the application of multiple injection strategies and conventional or partially premixed combustion conditions to a Diesel engine. The application of numerical techniques as CFD supports and improves the quality of engine developments. Unfortunately, current spray and combustion models are not accurate enough to simulate multiple injection systems, being in this way a topic of research. The goal of this study was the development of a novel simulation method for the investigation of Diesel engines operated with multiple injection strategies and different combustion modes. The first part of this work focused in improving the spray modelling. The inform ation of 3D CFD simulations of the injector nozzle was introduced in the spray simulation as boundary conditions developing coupling subroutines for this issue. The atomisation modelling was also improved using validated presumed droplet size distributions. Moreover, to avoid the simulation of the injector nozzle for every investigated operating point, a novel interpolating tool was developed in order to create spray boundary conditions based on few 3D CFD simulations of the nozzle under certain initial and boundary conditions. The second part of this thesis dealt with the combustion modelling of Diesel engines. For this issue, a laminar flamelet approach called Representative Interactive Flamelet model (RIF) was selected and implemented. Afterwards, an extended combustion model based on RIF was developed in order to take into account multiple injection strategies. Finally, this new model was validated with a wide range of operating points: applying multiple injection strategies under conventional and partially premixed combustion conditions.

Second Law of Thermodynamics Analysis of an Internal Combustion Engine Fueled with Methane

Second Law of Thermodynamics Analysis of an Internal Combustion Engine Fueled with Methane PDF Author: Muataz Abotabik
Publisher:
ISBN:
Category : Internal combustion engines
Languages : en
Pages : 107

Get Book Here

Book Description
The second law of thermodynamics is a powerful tool for calculating the amount of energy that can be converted to work (i.e., the exergy or availability of a system), which cannot be predicted using the first law. The objectives of this research project are to quantify the availability during the compression, combustion and expansion processes of a spark-ignited engine fueled with methane; and to highlight differences in the thermo-mechanical availability of the ideal and spark-ignition (SI) engine cycles. A cooperative single-cylinder research engine was used to measure the data required for availability analysis at equivalence ratios ranging between 0.83 and 1.25. The thermo-mechanical availability, normalized by the energy content of the mixture, was found to increase as the equivalence ratio decreases. First and second-law of Thermodynamics efficiencies also increased for fuel-leaner mixtures, but remained within four percent of each other for methane in both the ideal and the SI engine cycles.

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Author: Hongsheng Guo
Publisher: Frontiers Media SA
ISBN: 2889666212
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description


Applied Second Law Analysis of Heat Engine Cycles

Applied Second Law Analysis of Heat Engine Cycles PDF Author: S. Can Gülen
Publisher:
ISBN: 9781032161853
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
"Applied Second Law Analysis of Heat Engine Cycles offers a concise, practical approach to one of the building blocks of classical thermodynamics and demonstrates how it can be a powerful tool in the analysis of heat engine cycles. Including real system models with the industry-standard heat balance simulation software, Thermoflow Suite (GTPRO/MASTER, PEACE, Thermoflex) and Excel VBA, the book discusses both performance and cost factors. This book will be a valuable reference for practicing engineers to approach the most difficult thermal design and analysis problems in a logical manner"--

Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine

Second Law Analysis of Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine PDF Author: Hamidreza Mahabadipour
Publisher:
ISBN:
Category :
Languages : en
Pages : 83

Get Book Here

Book Description
A detailed second law analysis of dual fuel LTC is not yet available in the open literature even though dual fuel low temperature combustion (LTC) has been studied before. To address this gap, a previously validated, closed-cycle, multi-zone, simulation of diesel-natural gas dual fuel LTC was used to perform a second law analysis. In the current study, a 2.4-liter single-cylinder research engine operating at a nominal load of 6 bar BMEP and 1700 rpm was used. Zone-wise thermodynamic irreversibilities as well as total cumulative entropy generated and lost available work over the closed cycle were quantified. Subsequently, two convenient second-law parameters were defined: (1) the “lost available indicated mean effective pressure” (LAIMEP), which can be interpreted as an engine-size-normalized measure of available work that is lost due to thermodynamic irreversibilities (analogous to the relationship between indicated mean effective pressure and indicated work); (2) fuel conversion irreversibility (FCI), which is defined as the ratio of lost available work to total fuel chemical energy input. Finally, parametric studies were performed to quantify the effects of diesel start of injection, intake manifold temperature, and intake boost pressure on LAIMEP and FCI. The results show that significant entropy generation occurred in the flame zone (52-61 percent) and the burned zone (31-39 percent) while packets account for less than 6 percent of the overall irreversibilities. Parametric studies showed LAIMEPs in the range of 645-768 kPa and FCIs in the range of 32.8-39.2 percent at different engine operating conditions. Although the present study focused on dual fuel LTC, the conceptual definitions of LAIMEP and FCI are generally applicable for comparing the thermodynamic irreversibilities of IC engines of any size and operating on any combustion strategy.

Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction

Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction PDF Author: Akhilendra Pratap Singh
Publisher: Springer Nature
ISBN: 9811615829
Category : Technology & Engineering
Languages : en
Pages : 269

Get Book Here

Book Description
This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.

Internal Combustion Engine Fundamentals

Internal Combustion Engine Fundamentals PDF Author: John B. Heywood
Publisher: McGraw-Hill Education
ISBN: 9780071004992
Category : Internal combustion engines
Languages : en
Pages : 930

Get Book Here

Book Description
This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.

Review of Thermodynamic Diesel Engine Simulations Under Transient Operating Conditions

Review of Thermodynamic Diesel Engine Simulations Under Transient Operating Conditions PDF Author: Constantine D. Rakopoulos
Publisher:
ISBN: 9780768016369
Category : Automobiles
Languages : en
Pages : 40

Get Book Here

Book Description
Study and modeling of transient operation is an important scientific objective. This is due to the fact that the majority of daily vehicle driving conditions involve transient operation, with non-linear situations experienced during engine transients. Thus, proper interconnection is needed between engine, governor, fuel pump, turbocharger and load. This paper surveys the publications available in the open literature concerning diesel engine simulations under transient operating conditions. Only those models that include both full engine thermodynamic calculations and dynamic powertrain modeling are taken into account, excluding those that focus on control design and optimization. Most of the attention is concentrated to the simulations that follow the filling and emptying modeling approach. A historical overview is given covering, in more detail, research groups with continuous and consistent study of transient operation. One of the main purposes of this paper is to summarize basic equations and modeling aspects concerning in-cylinder calculations, friction, turbocharger, engine dynamics, governor, fuel pump operation, and exhaust emissions during transients. The various limitations of the models are discussed together with the main aspects of transient operation (e.g. turbocharger lag, combustion and friction deterioration), which diversify it from the steady-state. Some of the most important findings in the field during the last 30 years are presented and discussed. The survey extends to special cases of transient diesel engine simulation, such as second-law analysis, response when the turbocharger compressor experiences surge, and whole vehicle performance. Several methods of improving transient response are also mentioned, based on the various simulations. An easy-to-read tabulation of all research groups dealing with the subject, that includes details about each model developed and engines/parameters studied, is also provided at the end of the paper.-- SAE website.