Searches for Associated Higgs Boson Production with Top Quark Pair and Higgs Pair Production in Multi Lepton Final States with the ATLAS Detector

Searches for Associated Higgs Boson Production with Top Quark Pair and Higgs Pair Production in Multi Lepton Final States with the ATLAS Detector PDF Author: Merve Nazlim Agaras
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Since the discovery of the Higgs boson at a mass around 125 GeV by both ATLAS and CMS collaborations in July 2012, it became crucial to measure its properties, such as its couplings to other particles, and search for any deviations from the Standard Model (SM) predictions. The top quark Yukawa coupling is close to unity and the strongest in the fermionic sector. Therefore, this coupling plays a crucial role in the theory. Determination of the associated production of The Higgs boson production with a pair of top quarks (ttH) offers a tree-level access to measuring this coupling. The analysis of ttH production at ATLAS experiment exploits several Higgs decay channel, together with different top quark decay modes. In this thesis, the study of the ttH (H → Multi lepton) process is presented in the topology where the Higgs decays to WW,ZZ or tautau, using a dataset corresponding to an integrated luminosity of 79.8fb^-1 at √s = 13 TeV, collected with the ATLAS detector between 2015-2017. Improved knowledge on the background modelling and the complex fit model is used with many degrees of freedoms. Particularly different fit setups are presented in order to understand the modelling of the major irreducible background, ttW. Furthermore, a search for the SM Higgs boson pair production in the multi lepton final states is presented. The search uses 139fb^-1 of proton-proton collisions data at a centre-of-mass energy of 13 TeV provided by the Large Hadron Collider (LHC) and recorded by the ATLAS experiment in 2015 and 2018. The first studies in two lepton same-sign channel is performed for lepton working point optimisation and estimation of background contributions. Template fit method is applied to estimated the reducible backgrounds and preliminary expected upper limit is calculated.

Searches for Associated Higgs Boson Production with Top Quark Pair and Higgs Pair Production in Multi Lepton Final States with the ATLAS Detector

Searches for Associated Higgs Boson Production with Top Quark Pair and Higgs Pair Production in Multi Lepton Final States with the ATLAS Detector PDF Author: Merve Nazlim Agaras
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Since the discovery of the Higgs boson at a mass around 125 GeV by both ATLAS and CMS collaborations in July 2012, it became crucial to measure its properties, such as its couplings to other particles, and search for any deviations from the Standard Model (SM) predictions. The top quark Yukawa coupling is close to unity and the strongest in the fermionic sector. Therefore, this coupling plays a crucial role in the theory. Determination of the associated production of The Higgs boson production with a pair of top quarks (ttH) offers a tree-level access to measuring this coupling. The analysis of ttH production at ATLAS experiment exploits several Higgs decay channel, together with different top quark decay modes. In this thesis, the study of the ttH (H → Multi lepton) process is presented in the topology where the Higgs decays to WW,ZZ or tautau, using a dataset corresponding to an integrated luminosity of 79.8fb^-1 at √s = 13 TeV, collected with the ATLAS detector between 2015-2017. Improved knowledge on the background modelling and the complex fit model is used with many degrees of freedoms. Particularly different fit setups are presented in order to understand the modelling of the major irreducible background, ttW. Furthermore, a search for the SM Higgs boson pair production in the multi lepton final states is presented. The search uses 139fb^-1 of proton-proton collisions data at a centre-of-mass energy of 13 TeV provided by the Large Hadron Collider (LHC) and recorded by the ATLAS experiment in 2015 and 2018. The first studies in two lepton same-sign channel is performed for lepton working point optimisation and estimation of background contributions. Template fit method is applied to estimated the reducible backgrounds and preliminary expected upper limit is calculated.

Search for the Associated Production of the Higgs Boson with a Top Quark Pair in Multilepton Final States with the ATLAS Detector

Search for the Associated Production of the Higgs Boson with a Top Quark Pair in Multilepton Final States with the ATLAS Detector PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Get Book Here

Book Description


Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC

Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC PDF Author: Cristina Martin Perez
Publisher: Springer Nature
ISBN: 3030902064
Category : Science
Languages : en
Pages : 291

Get Book Here

Book Description
In this work, the interaction between the Higgs boson and the top quark is studied with the proton-proton collisions at 13 TeV provided by the LHC at the CMS detector at CERN (Geneva). At the LHC, these particles are produced simultaneously via the associate production of the Higgs boson with one top quark (tH process) or two top quarks (ttH process). Compared to many other possible outcomes of the proton-proton interactions, these processes are very rare, as the top quark and the Higgs boson are the heaviest elementary particles known. Hence, identifying them constitutes a significant experimental challenge. A high particle selection efficiency in the CMS detector is therefore crucial. At the core of this selection stands the Level-1 (L1) trigger system, a system that filters collision events to retain only those with potential interest for physics analysis. The selection of hadronically decaying τ leptons, expected from the Higgs boson decays, is especially demanding due to the large background arising from the QCD interactions. The first part of this thesis presents the optimization of the L1 τ algorithm in Run 2 (2016-2018) and Run 3 (2022-2024) of the LHC. It includes the development of a novel trigger concept for the High-Luminosity LHC, foreseen to start in 2027 and to deliver 5 times the current instantaneous luminosity. To this end, sophisticated algorithms based on machine learning approaches are used, facilitated by the increasingly modern technology and powerful computation of the trigger system. The second part of the work presents the search of the tH and ttH processes with the subsequent decays of the Higgs boson to pairs of τ lepton, W bosons or Z bosons, making use of the data recorded during Run 2. The presence of multiple particles in the final state, along with the low cross section of the processes, makes the search an ideal use case for multivariant discriminants that enhance the selectivity of the signals and reject the overwhelming background contributions. The discriminants presented are built using state-of-the-art machine learning techniques, able to capture the correlations amongst the processes involved, as well as the so-called Matrix Element Method (MEM), which combines the theoretical description of the processes with the detector resolution effects. The level of sophistication of the methods used, along with the unprecedented amount of collision data analyzed, result in the most stringent measurements of the tH and ttH cross sections up to date.

Search for New Physics in tt ̅ Final States with Additional Heavy-Flavor Jets with the ATLAS Detector

Search for New Physics in tt ̅ Final States with Additional Heavy-Flavor Jets with the ATLAS Detector PDF Author: Javier Montejo Berlingen
Publisher: Springer
ISBN: 3319410512
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
This doctoral thesis focuses on the search for new phenomena in top-antitop quark (tt) final states with additional b-quark jets at the LHC. It uses the full Run 1 dataset collected by the ATLAS experiment in proton-proton collisions at √s=8 TeV. The final state of interest consists of an isolated lepton, a neutrino and at least six jets with at least four b-tagged jets, a challenging experimental signature owing to the large background from tt+heavy-flavor production. This final state is characteristic of ttH production, with the Higgs boson decaying into bb, a process that allows direct probing of the top-Higgs Yukawa coupling. This signature is also present in many extensions of the Standard Model that have been proposed as solutions to the hierarchy problem, such as supersymmetry or composite Higgs models, which predict the pair production of bosonic or fermionic top quark partners, or the anomalous production of four-top-quark events. All these physics processes have been searched for using an ambitious search strategy that has been developed on the basis of a combination of state-of-art theoretical predictions and a sophisticated statistical analysis to constrain in-situ the large background uncertainties. As a result, the most restrictive bounds to date on the above physics processes have been obtained.

The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures

The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures PDF Author: Daniel Salerno
Publisher: Springer Nature
ISBN: 3030312577
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description
The work presented in this PhD dissertation is the first search at CMS for Higgs bosons produced in association with top quarks (ttH) in a final state consisting of only jets. The results presented in this book uncover a new class of ttH events that will help us elucidate our understanding of the Yukawa sector interactions between the Higgs boson and the top quark. Despite this being the most common decay signature for ttH, a large contamination of SM backgrounds makes it the most challenging for extracting a signal from data. The PhD thesis presents many sophisticated tools and techniques that were developed in order to overcome these challenges. These tools pave the way for future analyses to investigate other standard model and beyond-standard model physics.

Search for the Production of the Higgs Boson Associated with a Pair of Top Quarks with the Atlas Detector at the LHC

Search for the Production of the Higgs Boson Associated with a Pair of Top Quarks with the Atlas Detector at the LHC PDF Author: Chao Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The production of the Higgs boson associated with a pair of top quarks is one of the most important Higgs boson production modes yet still not observed. Therefore, its discovery is one of the most challenging searches after the Higgs discovery: not only will it be the first time we can observe this Higgs production mode but also we will be able to measure its Yukawa coupling to the top quark. The measured results can answer the basic question of the Standard Model (SM) and can also search for any hints of new physics beyond the SM prediction. An analysis searching for the production of the Higgs boson associated with a pair of top quarks in three leptons final states is presented in this thesis. It is performed with the data collected by the ATLAS detector in 2015 and 2016 during the so-called « Run 2 » campaign corresponding to an integrated luminosity of 36.1 fb−1 at a center of mass energy of 13 TeV. It uses a boosted decision tree algorithm to discriminate between signal and background. The dominant background of fake leptons is estimated with the data-driven matrix method (Matrix Method). For a 125 GeV Standard Model Higgs boson, an excess of events over the expected background from other SM processes is found with an observed significance of 2.2 standard deviations, compared to an expectation of 1.5 standard deviations. The best fit for the ̄ttH production cross section is 1.5+0⋅8−0⋅7 times the SM expectation, consistent with the SM value of the Yukawa coupling to top quarks.

Search for Flavor-Changing Neutral Current Top Quark Decays t → Hq, with H → bb̅ , in pp Collisions at √s = 8 TeV with the ATLAS Detector

Search for Flavor-Changing Neutral Current Top Quark Decays t → Hq, with H → bb̅ , in pp Collisions at √s = 8 TeV with the ATLAS Detector PDF Author: Shota Tsiskaridze
Publisher: Springer
ISBN: 3319634143
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches – in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.

Higgs Boson Production with a Top Quark Pair in the Diphoton Channel, Double Higgs Production in the Bb-diphoton Channel, and Inner Tracker Upgrade with the Atlas Detector at the Large Hadron Collider

Higgs Boson Production with a Top Quark Pair in the Diphoton Channel, Double Higgs Production in the Bb-diphoton Channel, and Inner Tracker Upgrade with the Atlas Detector at the Large Hadron Collider PDF Author: Alex Zeng Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Since the discovery of the Higgs boson in 2012, the diphoton ([gamma][gamma]) decay channel of the Higgs boson has been one of the most potent channels due to the contrast between the smoothly falling background and sharply peaked signal in the diphoton invariant mass. In 2018, with up to 80 fb-1 of data at [square root]s = 13 TeV, ATLAS observed Higgs boson production in association with a pair of top quarks (ttH) with a significance of 5.8 [sigma] by combining measurements in the [gamma][gamma], bb, ZZ, and multi-lepton Higgs decay channels. The ttH production cross-section was measured to be 670 [plus or minus] 90 (stat) +110 -100 (syst) fb. The diphoton channel was one of the main contributors to this result, alone providing a significance of 4.1 [sigma]. With 140 fb-1, a search for non-resonant Higgs pair production in the bb[gamma][gamma] final state was performed. No significant signal was observed and upper limits at 95% confidence level were set. The observed limit on the SM cross-section was 130 fb, or 4.2 times the predicted value. The observed Higgs trilinear coupling modifier was constrained to be between [-1.5, 6.7]. Both the ttH (H [rightwards arrow] [gamma][gamma]) and HH bb[gamma][gamma] analyses will benefit tremendously from the increased statistics expected from the High-Luminosity LHC (HL-LHC). To ensure the continued efficiency of the detector in the harsh HL-LHC environment, ATLAS will install a new Inner Tracker (ITk) consisting of silicon pixel sensors in its innermost layer. At SLAC National Accelerator Laboratory, a variety of electrical tests are performed for the construction of a prototype integrated pixel system, in order to provide early feedback and validation of the ITk design.

Searching for the Higgs Boson Produced in Association with a Pair of Top Quarks in Multilepton Final States Using the ATLAS Detector at the LHC.

Searching for the Higgs Boson Produced in Association with a Pair of Top Quarks in Multilepton Final States Using the ATLAS Detector at the LHC. PDF Author: David Anthony DeMarco
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Higgs Boson Decays into a Pair of Bottom Quarks

Higgs Boson Decays into a Pair of Bottom Quarks PDF Author: Cecilia Tosciri
Publisher: Springer Nature
ISBN: 3030879380
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H → bb) signal measurement. The cross sections for the VH production times the H → bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.