Author: Chandrika Kamath
Publisher: SIAM
ISBN: 0898717698
Category : Mathematics
Languages : en
Pages : 295
Book Description
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Scientific Data Mining
Author: Chandrika Kamath
Publisher: SIAM
ISBN: 0898717698
Category : Mathematics
Languages : en
Pages : 295
Book Description
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Publisher: SIAM
ISBN: 0898717698
Category : Mathematics
Languages : en
Pages : 295
Book Description
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Data Mining for Scientific and Engineering Applications
Author: R.L. Grossman
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Scientific Data Mining and Knowledge Discovery
Author: Mohamed Medhat Gaber
Publisher: Springer Science & Business Media
ISBN: 3642027881
Category : Computers
Languages : en
Pages : 398
Book Description
Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Publisher: Springer Science & Business Media
ISBN: 3642027881
Category : Computers
Languages : en
Pages : 398
Book Description
Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Life Science Data Mining
Author: Stephen T. C. Wong
Publisher: World Scientific Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 392
Book Description
This timely book identifies and highlights the latest data mining paradigms to analyze, combine, integrate, model and simulate vast amounts of heterogeneous multi-modal, multi-scale data for emerging real-world applications in life science.The cutting-edge topics presented include bio-surveillance, disease outbreak detection, high throughput bioimaging, drug screening, predictive toxicology, biosensors, and the integration of macro-scale bio-surveillance and environmental data with micro-scale biological data for personalized medicine. This collection of works from leading researchers in the field offers readers an exceptional start in these areas.
Publisher: World Scientific Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 392
Book Description
This timely book identifies and highlights the latest data mining paradigms to analyze, combine, integrate, model and simulate vast amounts of heterogeneous multi-modal, multi-scale data for emerging real-world applications in life science.The cutting-edge topics presented include bio-surveillance, disease outbreak detection, high throughput bioimaging, drug screening, predictive toxicology, biosensors, and the integration of macro-scale bio-surveillance and environmental data with micro-scale biological data for personalized medicine. This collection of works from leading researchers in the field offers readers an exceptional start in these areas.
Data Mining and Machine Learning
Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779
Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779
Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Data Mining for the Social Sciences
Author: Paul Attewell
Publisher: Univ of California Press
ISBN: 0520280989
Category : Computers
Languages : en
Pages : 264
Book Description
"The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher.
Publisher: Univ of California Press
ISBN: 0520280989
Category : Computers
Languages : en
Pages : 264
Book Description
"The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits"--Provided by publisher.
Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences
Author: John J. McArdle
Publisher: Routledge
ISBN: 1135044090
Category : Psychology
Languages : en
Pages : 496
Book Description
This book reviews the latest techniques in exploratory data mining (EDM) for the analysis of data in the social and behavioral sciences to help researchers assess the predictive value of different combinations of variables in large data sets. Methodological findings and conceptual models that explain reliable EDM techniques for predicting and understanding various risk mechanisms are integrated throughout. Numerous examples illustrate the use of these techniques in practice. Contributors provide insight through hands-on experiences with their own use of EDM techniques in various settings. Readers are also introduced to the most popular EDM software programs. A related website at http://mephisto.unige.ch/pub/edm-book-supplement/offers color versions of the book’s figures, a supplemental paper to chapter 3, and R commands for some chapters. The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed. Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include: selection to college based on risky prior academic profiles the decline of cognitive abilities in older persons global perceptions of stress in adulthood predicting mortality from demographics and cognitive abilities risk factors during pregnancy and the impact on neonatal development Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.
Publisher: Routledge
ISBN: 1135044090
Category : Psychology
Languages : en
Pages : 496
Book Description
This book reviews the latest techniques in exploratory data mining (EDM) for the analysis of data in the social and behavioral sciences to help researchers assess the predictive value of different combinations of variables in large data sets. Methodological findings and conceptual models that explain reliable EDM techniques for predicting and understanding various risk mechanisms are integrated throughout. Numerous examples illustrate the use of these techniques in practice. Contributors provide insight through hands-on experiences with their own use of EDM techniques in various settings. Readers are also introduced to the most popular EDM software programs. A related website at http://mephisto.unige.ch/pub/edm-book-supplement/offers color versions of the book’s figures, a supplemental paper to chapter 3, and R commands for some chapters. The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed. Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include: selection to college based on risky prior academic profiles the decline of cognitive abilities in older persons global perceptions of stress in adulthood predicting mortality from demographics and cognitive abilities risk factors during pregnancy and the impact on neonatal development Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.
Clinical Data-Mining
Author: Irwin Epstein
Publisher: Oxford University Press
ISBN: 019533552X
Category : Computers
Languages : en
Pages : 241
Book Description
Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration.
Publisher: Oxford University Press
ISBN: 019533552X
Category : Computers
Languages : en
Pages : 241
Book Description
Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration.
Data Mining and Analysis
Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607
Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607
Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Data Mining: Concepts and Techniques
Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740
Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740
Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data