Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 492
Book Description
Science & Engineering Indicators
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 492
Book Description
Building America's Skilled Technical Workforce
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309440068
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
Skilled technical occupationsâ€"defined as occupations that require a high level of knowledge in a technical domain but do not require a bachelor's degree for entryâ€"are a key component of the U.S. economy. In response to globalization and advances in science and technology, American firms are demanding workers with greater proficiency in literacy and numeracy, as well as strong interpersonal, technical, and problem-solving skills. However, employer surveys and industry and government reports have raised concerns that the nation may not have an adequate supply of skilled technical workers to achieve its competitiveness and economic growth objectives. In response to the broader need for policy information and advice, Building America's Skilled Technical Workforce examines the coverage, effectiveness, flexibility, and coordination of the policies and various programs that prepare Americans for skilled technical jobs. This report provides action-oriented recommendations for improving the American system of technical education, training, and certification.
Publisher: National Academies Press
ISBN: 0309440068
Category : Technology & Engineering
Languages : en
Pages : 259
Book Description
Skilled technical occupationsâ€"defined as occupations that require a high level of knowledge in a technical domain but do not require a bachelor's degree for entryâ€"are a key component of the U.S. economy. In response to globalization and advances in science and technology, American firms are demanding workers with greater proficiency in literacy and numeracy, as well as strong interpersonal, technical, and problem-solving skills. However, employer surveys and industry and government reports have raised concerns that the nation may not have an adequate supply of skilled technical workers to achieve its competitiveness and economic growth objectives. In response to the broader need for policy information and advice, Building America's Skilled Technical Workforce examines the coverage, effectiveness, flexibility, and coordination of the policies and various programs that prepare Americans for skilled technical jobs. This report provides action-oriented recommendations for improving the American system of technical education, training, and certification.
Barriers and Opportunities for 2-Year and 4-Year STEM Degrees
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373603
Category : Education
Languages : en
Pages : 215
Book Description
Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€"quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.
Publisher: National Academies Press
ISBN: 0309373603
Category : Education
Languages : en
Pages : 215
Book Description
Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€"quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.
Springer Handbook of Science and Technology Indicators
Author: Wolfgang Glänzel
Publisher: Springer Nature
ISBN: 303002511X
Category : Science
Languages : en
Pages : 1126
Book Description
This handbook presents the state of the art of quantitative methods and models to understand and assess the science and technology system. Focusing on various aspects of the development and application of indicators derived from data on scholarly publications, patents and electronic communications, the individual chapters, written by leading experts, discuss theoretical and methodological issues, illustrate applications, highlight their policy context and relevance, and point to future research directions. A substantial portion of the book is dedicated to detailed descriptions and analyses of data sources, presenting both traditional and advanced approaches. It addresses the main bibliographic metrics and indexes, such as the journal impact factor and the h-index, as well as altmetric and webometric indicators and science mapping techniques on different levels of aggregation and in the context of their value for the assessment of research performance as well as their impact on research policy and society. It also presents and critically discusses various national research evaluation systems. Complementing the sections reflecting on the science system, the technology section includes multiple chapters that explain different aspects of patent statistics, patent classification and database search methods to retrieve patent-related information. In addition, it examines the relevance of trademarks and standards as additional technological indicators. The Springer Handbook of Science and Technology Indicators is an invaluable resource for practitioners, scientists and policy makers wanting a systematic and thorough analysis of the potential and limitations of the various approaches to assess research and research performance.
Publisher: Springer Nature
ISBN: 303002511X
Category : Science
Languages : en
Pages : 1126
Book Description
This handbook presents the state of the art of quantitative methods and models to understand and assess the science and technology system. Focusing on various aspects of the development and application of indicators derived from data on scholarly publications, patents and electronic communications, the individual chapters, written by leading experts, discuss theoretical and methodological issues, illustrate applications, highlight their policy context and relevance, and point to future research directions. A substantial portion of the book is dedicated to detailed descriptions and analyses of data sources, presenting both traditional and advanced approaches. It addresses the main bibliographic metrics and indexes, such as the journal impact factor and the h-index, as well as altmetric and webometric indicators and science mapping techniques on different levels of aggregation and in the context of their value for the assessment of research performance as well as their impact on research policy and society. It also presents and critically discusses various national research evaluation systems. Complementing the sections reflecting on the science system, the technology section includes multiple chapters that explain different aspects of patent statistics, patent classification and database search methods to retrieve patent-related information. In addition, it examines the relevance of trademarks and standards as additional technological indicators. The Springer Handbook of Science and Technology Indicators is an invaluable resource for practitioners, scientists and policy makers wanting a systematic and thorough analysis of the potential and limitations of the various approaches to assess research and research performance.
Improving Indicators of the Quality of Science and Mathematics Education in Grades K-12
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309037409
Category : Education
Languages : en
Pages : 231
Book Description
This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.
Publisher: National Academies Press
ISBN: 0309037409
Category : Education
Languages : en
Pages : 231
Book Description
This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.
Cracking the code
Author: UNESCO
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Building Educational Equity Indicator Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309678935
Category : Education
Languages : en
Pages : 47
Book Description
How can states and schools use data to support their efforts to improve educational equity? Building Educational Equity Indicator Systems: A Guidebook for States and School Districts, provides information to help state and school district leaders develop ways of tracking educational equity within their preK â€" 12 systems. The guidebook expands on the indicators of educational equity identified in the 2019 National Academies report, Monitoring Educational Equity, showing education leaders how they can measure educational equity within their states and school districts. Some of the indicators focus on student outcomes, such as kindergarten readiness or educational attainment, while others focus on student access to opportunities and resources, such as effective instruction and rigorous curriculum. Together, the indicators provide a robust picture of the outcomes and opportunities that are central to educational equity from preK through grade 12. For each indicator of educational equity identified in the report, the guidebook describes what leaders should measure and what data to use, provides examples of data collection instruments, and offers considerations and challenges to keep in mind. The guidebook is meant to help education leaders catalogue data they already collect and identify new data sources to help them fill gaps.
Publisher: National Academies Press
ISBN: 0309678935
Category : Education
Languages : en
Pages : 47
Book Description
How can states and schools use data to support their efforts to improve educational equity? Building Educational Equity Indicator Systems: A Guidebook for States and School Districts, provides information to help state and school district leaders develop ways of tracking educational equity within their preK â€" 12 systems. The guidebook expands on the indicators of educational equity identified in the 2019 National Academies report, Monitoring Educational Equity, showing education leaders how they can measure educational equity within their states and school districts. Some of the indicators focus on student outcomes, such as kindergarten readiness or educational attainment, while others focus on student access to opportunities and resources, such as effective instruction and rigorous curriculum. Together, the indicators provide a robust picture of the outcomes and opportunities that are central to educational equity from preK through grade 12. For each indicator of educational equity identified in the report, the guidebook describes what leaders should measure and what data to use, provides examples of data collection instruments, and offers considerations and challenges to keep in mind. The guidebook is meant to help education leaders catalogue data they already collect and identify new data sources to help them fill gaps.
Science Indicators
Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 336
Book Description
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 336
Book Description
The Measurement of Scientific, Technological and Innovation Activities Frascati Manual 2015 Guidelines for Collecting and Reporting Data on Research and Experimental Development
Author: OECD
Publisher: OECD Publishing
ISBN: 9264239014
Category :
Languages : en
Pages : 402
Book Description
The internationally recognised methodology for collecting and using R&D statistics, the OECD's Frascati Manual is an essential tool for statisticians and science and innovation policy makers worldwide. It includes definitions of basic concepts, data collection guidelines, and classifications ...
Publisher: OECD Publishing
ISBN: 9264239014
Category :
Languages : en
Pages : 402
Book Description
The internationally recognised methodology for collecting and using R&D statistics, the OECD's Frascati Manual is an essential tool for statisticians and science and innovation policy makers worldwide. It includes definitions of basic concepts, data collection guidelines, and classifications ...
Science, Technology, Engineering, and Mathematics (Stem) Education
Author: Heather B. Gonzalez
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.