Author: Z. Semadeni
Publisher: Springer
ISBN: 3540391436
Category : Mathematics
Languages : en
Pages : 142
Book Description
Schauder Bases in Banach Spaces of Continuous Functions
Author: Z. Semadeni
Publisher: Springer
ISBN: 3540391436
Category : Mathematics
Languages : en
Pages : 142
Book Description
Publisher: Springer
ISBN: 3540391436
Category : Mathematics
Languages : en
Pages : 142
Book Description
Biorthogonal Systems in Banach Spaces
Author: Petr Hajek
Publisher: Springer Science & Business Media
ISBN: 038768915X
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book introduces the reader to some of the basic concepts, results and applications of biorthogonal systems in infinite dimensional geometry of Banach spaces, and in topology and nonlinear analysis in Banach spaces. It achieves this in a manner accessible to graduate students and researchers who have a foundation in Banach space theory. The authors have included numerous exercises, as well as open problems that point to possible directions of research.
Publisher: Springer Science & Business Media
ISBN: 038768915X
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book introduces the reader to some of the basic concepts, results and applications of biorthogonal systems in infinite dimensional geometry of Banach spaces, and in topology and nonlinear analysis in Banach spaces. It achieves this in a manner accessible to graduate students and researchers who have a foundation in Banach space theory. The authors have included numerous exercises, as well as open problems that point to possible directions of research.
Functional Analysis I
Author: Yu.I. Lyubich
Publisher: Springer Science & Business Media
ISBN: 3662028492
Category : Mathematics
Languages : en
Pages : 290
Book Description
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
Publisher: Springer Science & Business Media
ISBN: 3662028492
Category : Mathematics
Languages : en
Pages : 290
Book Description
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
Banach Space Theory and its Applications
Author: A. Pietsch
Publisher: Springer
ISBN: 3540398775
Category : Mathematics
Languages : en
Pages : 316
Book Description
Publisher: Springer
ISBN: 3540398775
Category : Mathematics
Languages : en
Pages : 316
Book Description
Bases in Banach Spaces I
Author: Ivan Singer
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 688
Book Description
This monograph attempts to present the results known today on bases in Banach spaces and some unsolved problems concerning them. Although this important part of the theory of Banach spaces has been studied for more than forty years by numerous mathematicians, the existing books on functional analysis (e. g. M. M. Day [43], A. Wilansky [263], R. E. Edwards [54]) contain only a few results on bases. A survey of the theory of bases in Banach spaces, up to 1963, has been presented in the expository papers [241], [242] and [243], which contain no proofs; although in the meantime the theory has rapidly deve1oped, much of the present monograph is based on those expository papers. Independently, a useful bibliography of papers on bases, up to 1963, was compiled by B. L. Sanders [219J. Due to the vastness of the field, the monograph is divided into two volumes, ofwhich this is the first (see the tab1e of contents). Some results and problems re1ated to those treated herein have been de1iberately planned to be inc1uded in Volume 11, where they will appear in their natural framework (see [242], [243]).
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 688
Book Description
This monograph attempts to present the results known today on bases in Banach spaces and some unsolved problems concerning them. Although this important part of the theory of Banach spaces has been studied for more than forty years by numerous mathematicians, the existing books on functional analysis (e. g. M. M. Day [43], A. Wilansky [263], R. E. Edwards [54]) contain only a few results on bases. A survey of the theory of bases in Banach spaces, up to 1963, has been presented in the expository papers [241], [242] and [243], which contain no proofs; although in the meantime the theory has rapidly deve1oped, much of the present monograph is based on those expository papers. Independently, a useful bibliography of papers on bases, up to 1963, was compiled by B. L. Sanders [219J. Due to the vastness of the field, the monograph is divided into two volumes, ofwhich this is the first (see the tab1e of contents). Some results and problems re1ated to those treated herein have been de1iberately planned to be inc1uded in Volume 11, where they will appear in their natural framework (see [242], [243]).
Thirteen Papers in Analysis
Author: R. R. Suncheleev
Publisher: American Mathematical Soc.
ISBN: 9780821831090
Category : Mathematics
Languages : en
Pages : 396
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821831090
Category : Mathematics
Languages : en
Pages : 396
Book Description
Bases in Banach Spaces
Author: Ivan Singer
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 688
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 688
Book Description
Lipschitz Algebras
Author: Nik Weaver
Publisher: World Scientific
ISBN: 9789810238735
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Publisher: World Scientific
ISBN: 9789810238735
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Topics in Banach Space Theory
Author: Fernando Albiac
Publisher: Springer
ISBN: 3319315579
Category : Mathematics
Languages : en
Pages : 512
Book Description
This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews
Publisher: Springer
ISBN: 3319315579
Category : Mathematics
Languages : en
Pages : 512
Book Description
This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews
Classical Banach Spaces
Author: Joram Lindenstrauss
Publisher: Springer
ISBN: 3540377328
Category : Mathematics
Languages : en
Pages : 254
Book Description
Springer-Verlag began publishing books in higher mathematics in 1920, when the series Grundlehren der mathematischen Wissenschaften, initially conceived as a series of advanced textbooks, was founded by Richard Courant. A few years later a new series Ergebnisse der Mathematik und ihrer Grenzgebiete, survey reports of recent mathematical research, was added. Of over 400 books published in these series, many have become recognized classics and remain standard references for their subject. Springer is reissuing a selected few of these highly successful books in a new, inexpensive sofcover edition to make them easily accessible to younger generations of students and researchers.
Publisher: Springer
ISBN: 3540377328
Category : Mathematics
Languages : en
Pages : 254
Book Description
Springer-Verlag began publishing books in higher mathematics in 1920, when the series Grundlehren der mathematischen Wissenschaften, initially conceived as a series of advanced textbooks, was founded by Richard Courant. A few years later a new series Ergebnisse der Mathematik und ihrer Grenzgebiete, survey reports of recent mathematical research, was added. Of over 400 books published in these series, many have become recognized classics and remain standard references for their subject. Springer is reissuing a selected few of these highly successful books in a new, inexpensive sofcover edition to make them easily accessible to younger generations of students and researchers.