Author: Ioan Merches
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Scale Transitions As Foundations Of Physics
Author: Ioan Merches
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Publisher: World Scientific
ISBN: 9811231885
Category : Science
Languages : en
Pages : 429
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Scale Transitions as Foundations of Physics
Author: Nicolae Mazilu
Publisher: World Scientific Publishing Company
ISBN: 9789811231865
Category : Mathematical physics
Languages : en
Pages : 0
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Publisher: World Scientific Publishing Company
ISBN: 9789811231865
Category : Mathematical physics
Languages : en
Pages : 0
Book Description
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Scale Invariance
Author: Annick LESNE
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406
Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Publisher: Springer Science & Business Media
ISBN: 364215123X
Category : Science
Languages : en
Pages : 406
Book Description
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
The Mathematical Principles of Scale Relativity Physics
Author: Nicolae Mazilu
Publisher: CRC Press
ISBN: 1000751023
Category : Mathematics
Languages : en
Pages : 256
Book Description
The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale’s scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale’s scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck’s law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.
Publisher: CRC Press
ISBN: 1000751023
Category : Mathematics
Languages : en
Pages : 256
Book Description
The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale’s scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale’s scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck’s law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.
Finite-Size Scaling
Author: J. Cardy
Publisher: Elsevier
ISBN: 0444596062
Category : Computers
Languages : en
Pages : 385
Book Description
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Publisher: Elsevier
ISBN: 0444596062
Category : Computers
Languages : en
Pages : 385
Book Description
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Zero to Infinity
Author: Peter Rowlands
Publisher: World Scientific
ISBN: 9812709150
Category : Science
Languages : en
Pages : 738
Book Description
Unique in its field, this book uses a methodology that is entirely new, creating the simplest and most abstract foundations for physics to date. The author proposes a fundamental description of process in a universal computational rewrite system, leading to an irreducible form of relativistic quantum mechanics from a single operator. This is not only simpler, and more fundamental, but also seemingly more powerful than any other quantum mechanics formalism available. The methodology finds immediate applications in particle physics, theoretical physics and theoretical computing. In addition, taking the rewrite structure more generally as a description of process, the book shows how it can be applied to large-scale structures beyond the realm of fundamental physics. Sample Chapter(s). Chapter 1: Zero (228 KB). Contents: Zero; Why Does Physics Work?; The Emergence of Physics; Groups and Representations; Breaking the Dirac Code; The Dirac Nilpotent; Nonrelativistic Quantum Mechanics and the Classical Transition; The Classical and Special Relativistic Approximations; The Resolution of Paradoxes; Electric, Strong and Weak Interactions; QED and Its Analogues; Vacuum; Fermion and Boson Structures; A Representation of Strong and Weak Interactions; Grand Unification and Particle Masses; The Factor 2 and Duality; Gravity and Inertia; Dimensionality, Strings and Quantum Gravity; Nature''s Code; Nature''s Rule; Infinity. Readership: Researchers in quantum, theoretical and high energy physics.
Publisher: World Scientific
ISBN: 9812709150
Category : Science
Languages : en
Pages : 738
Book Description
Unique in its field, this book uses a methodology that is entirely new, creating the simplest and most abstract foundations for physics to date. The author proposes a fundamental description of process in a universal computational rewrite system, leading to an irreducible form of relativistic quantum mechanics from a single operator. This is not only simpler, and more fundamental, but also seemingly more powerful than any other quantum mechanics formalism available. The methodology finds immediate applications in particle physics, theoretical physics and theoretical computing. In addition, taking the rewrite structure more generally as a description of process, the book shows how it can be applied to large-scale structures beyond the realm of fundamental physics. Sample Chapter(s). Chapter 1: Zero (228 KB). Contents: Zero; Why Does Physics Work?; The Emergence of Physics; Groups and Representations; Breaking the Dirac Code; The Dirac Nilpotent; Nonrelativistic Quantum Mechanics and the Classical Transition; The Classical and Special Relativistic Approximations; The Resolution of Paradoxes; Electric, Strong and Weak Interactions; QED and Its Analogues; Vacuum; Fermion and Boson Structures; A Representation of Strong and Weak Interactions; Grand Unification and Particle Masses; The Factor 2 and Duality; Gravity and Inertia; Dimensionality, Strings and Quantum Gravity; Nature''s Code; Nature''s Rule; Infinity. Readership: Researchers in quantum, theoretical and high energy physics.
The Oxford Handbook of Philosophy of Physics
Author: Robert Batterman
Publisher: Oxford University Press
ISBN: 0195392043
Category : Philosophy
Languages : en
Pages : 701
Book Description
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
Publisher: Oxford University Press
ISBN: 0195392043
Category : Philosophy
Languages : en
Pages : 701
Book Description
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
Scale Relativity and Fractal Space-time
Author: Laurent Nottale
Publisher: World Scientific
ISBN: 1848166508
Category : Science
Languages : en
Pages : 766
Book Description
This book provides a comprehensive survey of the state-of-the-art in the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system. In the framework of such a newly-generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that goes beyond and integrates the classical and the quantum regimes. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
Publisher: World Scientific
ISBN: 1848166508
Category : Science
Languages : en
Pages : 766
Book Description
This book provides a comprehensive survey of the state-of-the-art in the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling quantum mechanics to be based on the principle of relativity provided this principle is extended to scale transformations of the reference system. In the framework of such a newly-generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that goes beyond and integrates the classical and the quantum regimes. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.
Nonequilibrium Physics at Short Time Scales
Author: Klaus Morawetz
Publisher: Springer Science & Business Media
ISBN: 3662089904
Category : Science
Languages : en
Pages : 499
Book Description
This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.
Publisher: Springer Science & Business Media
ISBN: 3662089904
Category : Science
Languages : en
Pages : 499
Book Description
This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.