Author: Jialu Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1627059180
Category : Computers
Languages : en
Pages : 89
Book Description
A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In this book, we investigated one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. In contrast to a list of frequent n-grams without proper filtering, users are often more interested in results based on variable-length phrases with certain semantics such as scientific concepts, organizations, slogans, and so on. We propose new principles and powerful methodologies to achieve this goal, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning. This book also introduces applications enabled by the mined phrases and points out some promising research directions.
Phrase Mining from Massive Text and Its Applications
Author: Jialu Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1627059180
Category : Computers
Languages : en
Pages : 89
Book Description
A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In this book, we investigated one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. In contrast to a list of frequent n-grams without proper filtering, users are often more interested in results based on variable-length phrases with certain semantics such as scientific concepts, organizations, slogans, and so on. We propose new principles and powerful methodologies to achieve this goal, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning. This book also introduces applications enabled by the mined phrases and points out some promising research directions.
Publisher: Morgan & Claypool Publishers
ISBN: 1627059180
Category : Computers
Languages : en
Pages : 89
Book Description
A lot of digital ink has been spilled on "big data" over the past few years. Most of this surge owes its origin to the various types of unstructured data in the wild, among which the proliferation of text-heavy data is particularly overwhelming, attributed to the daily use of web documents, business reviews, news, social posts, etc., by so many people worldwide.A core challenge presents itself: How can one efficiently and effectively turn massive, unstructured text into structured representation so as to further lay the foundation for many other downstream text mining applications? In this book, we investigated one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. In contrast to a list of frequent n-grams without proper filtering, users are often more interested in results based on variable-length phrases with certain semantics such as scientific concepts, organizations, slogans, and so on. We propose new principles and powerful methodologies to achieve this goal, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning. This book also introduces applications enabled by the mined phrases and points out some promising research directions.
Text Analytics with Python
Author: Dipanjan Sarkar
Publisher: Apress
ISBN: 1484223888
Category : Computers
Languages : en
Pages : 397
Book Description
Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data
Publisher: Apress
ISBN: 1484223888
Category : Computers
Languages : en
Pages : 397
Book Description
Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data
The Text Mining Handbook
Author: Ronen Feldman
Publisher: Cambridge University Press
ISBN: 0521836573
Category : Computers
Languages : en
Pages : 423
Book Description
Publisher description
Publisher: Cambridge University Press
ISBN: 0521836573
Category : Computers
Languages : en
Pages : 423
Book Description
Publisher description
Text Analytics with SAS
Author:
Publisher:
ISBN: 9781642954821
Category :
Languages : en
Pages : 108
Book Description
SAS provides many different solutions to investigate and analyze text and operationalize decisioning. Several impressive papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from recent Global Forum contributions to introduce you to the topic and let you sample what each has to offer. Also available free as a PDF from sas.com/books.
Publisher:
ISBN: 9781642954821
Category :
Languages : en
Pages : 108
Book Description
SAS provides many different solutions to investigate and analyze text and operationalize decisioning. Several impressive papers have been written to demonstrate how to use these techniques. We have carefully selected a handful of these from recent Global Forum contributions to introduce you to the topic and let you sample what each has to offer. Also available free as a PDF from sas.com/books.
Encyclopedia of Information Science and Technology, Third Edition
Author: Khosrow-Pour, Mehdi
Publisher: IGI Global
ISBN: 1466658894
Category : Computers
Languages : en
Pages : 7972
Book Description
"This 10-volume compilation of authoritative, research-based articles contributed by thousands of researchers and experts from all over the world emphasized modern issues and the presentation of potential opportunities, prospective solutions, and future directions in the field of information science and technology"--Provided by publisher.
Publisher: IGI Global
ISBN: 1466658894
Category : Computers
Languages : en
Pages : 7972
Book Description
"This 10-volume compilation of authoritative, research-based articles contributed by thousands of researchers and experts from all over the world emphasized modern issues and the presentation of potential opportunities, prospective solutions, and future directions in the field of information science and technology"--Provided by publisher.
Mining of Massive Datasets
Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480
Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Natural Language Processing and Text Mining
Author: Anne Kao
Publisher: Springer Science & Business Media
ISBN: 1846287545
Category : Computers
Languages : en
Pages : 272
Book Description
Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
Publisher: Springer Science & Business Media
ISBN: 1846287545
Category : Computers
Languages : en
Pages : 272
Book Description
Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
Survey of Text Mining
Author: Michael W. Berry
Publisher: Springer Science & Business Media
ISBN: 147574305X
Category : Computers
Languages : en
Pages : 251
Book Description
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
Publisher: Springer Science & Business Media
ISBN: 147574305X
Category : Computers
Languages : en
Pages : 251
Book Description
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
Data Warehousing and Knowledge Discovery
Author: Yahiko Kambayashi
Publisher: Springer Science & Business Media
ISBN: 354040807X
Category : Business & Economics
Languages : en
Pages : 444
Book Description
This book constitutes the refereed proceedings of the 5th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2003, held in Prague, Czech Republic in September 2003. The 41 revised full papers presented were carefully reviewed and selected from more than 130 submissions. The papers are organized in topical sections on data cubes and queries, multidimensional data models, Web warehousing, change detection, Web mining and association rules, association rules and decision trees, clustering, association rule mining, data analysis and discovery, ontologies and improving data quality, queries and data patterns, improving database query engines, and sampling and vector classification.
Publisher: Springer Science & Business Media
ISBN: 354040807X
Category : Business & Economics
Languages : en
Pages : 444
Book Description
This book constitutes the refereed proceedings of the 5th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2003, held in Prague, Czech Republic in September 2003. The 41 revised full papers presented were carefully reviewed and selected from more than 130 submissions. The papers are organized in topical sections on data cubes and queries, multidimensional data models, Web warehousing, change detection, Web mining and association rules, association rules and decision trees, clustering, association rule mining, data analysis and discovery, ontologies and improving data quality, queries and data patterns, improving database query engines, and sampling and vector classification.
Data-Intensive Text Processing with MapReduce
Author: Jimmy Lin
Publisher: Springer Nature
ISBN: 3031021363
Category : Computers
Languages : en
Pages : 171
Book Description
Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks
Publisher: Springer Nature
ISBN: 3031021363
Category : Computers
Languages : en
Pages : 171
Book Description
Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks