Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309287812
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309287812
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing PDF Author: Valentina Janev
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212

Get Book Here

Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.

Developing and Securing the Cloud

Developing and Securing the Cloud PDF Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1439862923
Category : Computers
Languages : en
Pages : 706

Get Book Here

Book Description
Although the use of cloud computing platforms and applications has expanded rapidly, most books on the subject focus on high-level concepts. There has long been a need for a book that provides detailed guidance on how to develop secure clouds.Filling this void, Developing and Securing the Cloud provides a comprehensive overview of cloud computing t

Analyzing and Securing Social Networks

Analyzing and Securing Social Networks PDF Author: Bhavani Thuraisingham
Publisher: CRC Press
ISBN: 1482243288
Category : Computers
Languages : en
Pages : 586

Get Book Here

Book Description
Analyzing and Securing Social Networks focuses on the two major technologies that have been developed for online social networks (OSNs): (i) data mining technologies for analyzing these networks and extracting useful information such as location, demographics, and sentiments of the participants of the network, and (ii) security and privacy technolo

Cloud-Based RDF Data Management

Cloud-Based RDF Data Management PDF Author: Zoi Kaoudi
Publisher: Springer Nature
ISBN: 3031018753
Category : Computers
Languages : en
Pages : 91

Get Book Here

Book Description
Resource Description Framework (or RDF, in short) is set to deliver many of the original semi-structured data promises: flexible structure, optional schema, and rich, flexible Universal Resource Identifiers as a basis for information sharing. Moreover, RDF is uniquely positioned to benefit from the efforts of scientific communities studying databases, knowledge representation, and Web technologies. As a consequence, the RDF data model is used in a variety of applications today for integrating knowledge and information: in open Web or government data via the Linked Open Data initiative, in scientific domains such as bioinformatics, and more recently in search engines and personal assistants of enterprises in the form of knowledge graphs. Managing such large volumes of RDF data is challenging due to the sheer size, heterogeneity, and complexity brought by RDF reasoning. To tackle the size challenge, distributed architectures are required. Cloud computing is an emerging paradigm massively adopted in many applications requiring distributed architectures for the scalability, fault tolerance, and elasticity features it provides. At the same time, interest in massively parallel processing has been renewed by the MapReduce model and many follow-up works, which aim at simplifying the deployment of massively parallel data management tasks in a cloud environment. In this book, we study the state-of-the-art RDF data management in cloud environments and parallel/distributed architectures that were not necessarily intended for the cloud, but can easily be deployed therein. After providing a comprehensive background on RDF and cloud technologies, we explore four aspects that are vital in an RDF data management system: data storage, query processing, query optimization, and reasoning. We conclude the book with a discussion on open problems and future directions.

Cloud Computing and Digital Media

Cloud Computing and Digital Media PDF Author: Kuan-Ching Li
Publisher: CRC Press
ISBN: 1466569174
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Cloud Computing and Digital Media: Fundamentals, Techniques, and Applications presents the fundamentals of cloud and media infrastructure, novel technologies that integrate digital media with cloud computing, and real-world applications that exemplify the potential of cloud computing for next-generation digital media. It brings together technologies for media/data communication, elastic media/data storage, security, authentication, cross-network media/data fusion, interdevice media interaction/reaction, data centers, PaaS, SaaS, and more. The book covers resource optimization for multimedia cloud computing—a key technical challenge in adopting cloud computing for various digital media applications. It describes several important new technologies in cloud computing and digital media, including query processing, semantic classification, music retrieval, mobile multimedia, and video transcoding. The book also illustrates the profound impact of emerging health-care and educational applications of cloud computing. Covering an array of state-of-the-art research topics, this book will help you understand the techniques and applications of cloud computing, the interaction/reaction of mobile devices, and digital media/data processing and communication.

Cloud Computing and Big Data

Cloud Computing and Big Data PDF Author: C. Catlett
Publisher: IOS Press
ISBN: 161499322X
Category : Computers
Languages : en
Pages : 260

Get Book Here

Book Description
Cloud computing offers many advantages to researchers and engineers who need access to high performance computing facilities for solving particular compute-intensive and/or large-scale problems, but whose overall high performance computing (HPC) needs do not justify the acquisition and operation of dedicated HPC facilities. There are, however, a number of fundamental problems which must be addressed, such as the limitations imposed by accessibility, security and communication speed, before these advantages can be exploited to the full. This book presents 14 contributions selected from the International Research Workshop on Advanced High Performance Computing Systems, held in Cetraro, Italy, in June 2012. The papers are arranged in three chapters. Chapter 1 includes five papers on cloud infrastructures, while Chapter 2 discusses cloud applications. The third chapter in the book deals with big data, which is nothing new – large scientific organizations have been collecting large amounts of data for decades – but what is new is that the focus has now broadened to include sectors such as business analytics, financial analyses, Internet service providers, oil and gas, medicine, automotive and a host of others. This book will be of interest to all those whose work involves them with aspects of cloud computing and big data applications.

Web Data Management

Web Data Management PDF Author: Serge Abiteboul
Publisher: Cambridge University Press
ISBN: 113950505X
Category : Computers
Languages : en
Pages : 451

Get Book Here

Book Description
The Internet and World Wide Web have revolutionized access to information. Users now store information across multiple platforms from personal computers to smartphones and websites. As a consequence, data management concepts, methods and techniques are increasingly focused on distribution concerns. Now that information largely resides in the network, so do the tools that process this information. This book explains the foundations of XML with a focus on data distribution. It covers the many facets of distributed data management on the Web, such as description logics, that are already emerging in today's data integration applications and herald tomorrow's semantic Web. It also introduces the machinery used to manipulate the unprecedented amount of data collected on the Web. Several 'Putting into Practice' chapters describe detailed practical applications of the technologies and techniques. The book will serve as an introduction to the new, global, information systems for Web professionals and master's level courses.

Scientific and Statistical Database Management

Scientific and Statistical Database Management PDF Author: Anastasia Ailamaki
Publisher: Springer
ISBN: 3642312357
Category : Computers
Languages : en
Pages : 668

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 24th International Conference on Scientific and Statistical Database Management, SSDBM 2012, held in Chania, Grete, Greece, in June 2012. The 25 long and 10 short papers presented together with 2 keynotes, 1 panel, and 13 demonstration and poster papers were carefully reviewed and selected from numerous submissions. The topics covered are uncertain and probabilistic data, parallel and distributed data management, graph processing, mining multidimensional data, provenance and workflows, processing scientific queries, and support for demanding applications.

Fast and Scalable Cloud Data Management

Fast and Scalable Cloud Data Management PDF Author: Felix Gessert
Publisher: Springer Nature
ISBN: 3030435067
Category : Computers
Languages : en
Pages : 199

Get Book Here

Book Description
The unprecedented scale at which data is both produced and consumed today has generated a large demand for scalable data management solutions facilitating fast access from all over the world. As one consequence, a plethora of non-relational, distributed NoSQL database systems have risen in recent years and today’s data management system landscape has thus become somewhat hard to overlook. As another consequence, complex polyglot designs and elaborate schemes for data distribution and delivery have become the norm for building applications that connect users and organizations across the globe – but choosing the right combination of systems for a given use case has become increasingly difficult as well. To help practitioners stay on top of that challenge, this book presents a comprehensive overview and classification of the current system landscape in cloud data management as well as a survey of the state-of-the-art approaches for efficient data distribution and delivery to end-user devices. The topics covered thus range from NoSQL storage systems and polyglot architectures (backend) over distributed transactions and Web caching (network) to data access and rendering performance in the client (end-user). By distinguishing popular data management systems by data model, consistency guarantees, and other dimensions of interest, this book provides an abstract framework for reasoning about the overall design space and the individual positions claimed by each of the systems therein. Building on this classification, this book further presents an application-driven decision guidance tool that breaks the process of choosing a set of viable system candidates for a given application scenario down into a straightforward decision tree.