Room Temperature Operation of Quantum Cascade Lasers Monolithically Integrated Onto a Lattice-mismatched Substrate

Room Temperature Operation of Quantum Cascade Lasers Monolithically Integrated Onto a Lattice-mismatched Substrate PDF Author: Rowel Canaon Go
Publisher:
ISBN:
Category :
Languages : en
Pages : 35

Get Book Here

Book Description
A small sample of 2 cm2 size was taken from a 6-inch wafer and processed into ridge-waveguide chips 3 mm x 30 [micrometer] in size. Lateral current injection scheme was utilized due to an insulating M-buffer layer. Preliminary reliability testing up to 200 minutes of runtime showed no sign of power degradation. Laser chips with high reflection (HR) coating showed optical power over 200 mW of total peak power at cryogenic temperature (78 K), with lasing seen up to 230 K. In this temperature range, the measured characteristic temperatures of T0 ≈ 460 K and T1 ≈ 210 K describes the temperature dependence for threshold current and slope efficiency. Adding a partial HR coating (56%) on the front facet extended the lasing range above room temperature (303 K). This thesis will also discuss the preliminary cryogenic temperature result of the first InP-based QCL grown on latticemismatched silicon (Si) substrate.

Room Temperature Operation of Quantum Cascade Lasers Monolithically Integrated Onto a Lattice-mismatched Substrate

Room Temperature Operation of Quantum Cascade Lasers Monolithically Integrated Onto a Lattice-mismatched Substrate PDF Author: Rowel Canaon Go
Publisher:
ISBN:
Category :
Languages : en
Pages : 35

Get Book Here

Book Description
A small sample of 2 cm2 size was taken from a 6-inch wafer and processed into ridge-waveguide chips 3 mm x 30 [micrometer] in size. Lateral current injection scheme was utilized due to an insulating M-buffer layer. Preliminary reliability testing up to 200 minutes of runtime showed no sign of power degradation. Laser chips with high reflection (HR) coating showed optical power over 200 mW of total peak power at cryogenic temperature (78 K), with lasing seen up to 230 K. In this temperature range, the measured characteristic temperatures of T0 ≈ 460 K and T1 ≈ 210 K describes the temperature dependence for threshold current and slope efficiency. Adding a partial HR coating (56%) on the front facet extended the lasing range above room temperature (303 K). This thesis will also discuss the preliminary cryogenic temperature result of the first InP-based QCL grown on latticemismatched silicon (Si) substrate.

Quantum Cascade Lasers Based on Intra-cavity Frequency Mixing

Quantum Cascade Lasers Based on Intra-cavity Frequency Mixing PDF Author: Min Jang
Publisher:
ISBN:
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
Quantum cascade lasers (QCLs) operate due to population inversion on intersubband in unipolar mutiple-quantum-well (MQW) heterostructure. QCLs are considered one of the most flexible and powerful light semiconductor sources in the mid- and far-infrared (IR) wavelength range, covering most of the critical spectral regions relevant to IR applications. InGaAs/InAlAs/InP QCLs are the only semiconductor lasers capable of continuous wave (CW) operation at room temperature (RT) in the spectral range 3.4-12 micron. This dissertation details the development of RT QCLs based on passive nonlinear coupled-quantum-well structures monolithically integrated into mid-IR QCLs to provide a giant nonlinear response for the pumping frequency. The primary focus of short-wavelength approach in this dissertation is to develop of RT InGaAs/InAlAs/InP QCLs for lamda=2.5-3.7 micron region, based on quasi-phase-matched intracavity second harmonic generation (SHG) associated with intersubband transition. Intersubband optical transition can be engineered by the choice of quantum well and barrier thicknesses to provide the appropriate energy levels, optical dipole matrix elements, and electron scattering rates amongst other parameters. Thus, aside from their linear optical properties, resonant intersubband transitions in coupled QW's can also be designed to produce nonlinear optical medium with giant nonlinear optical susceptibilities. In long-wavelength region, at high temperature, the population inversion is reduced between the upper and lower laser levels due to the longitudinal optical (LO) phonon scattering of thermal carriers in the upper laser state and the thermal backfilling of carriers into the lower laser level from the injector state. This dissertation aims to improve an alternative approach for THz QCL sources based on intra-cavity difference frequency generation (DFG) in dual-wavelength mid-IR QCLs with a passive nonlinear structure, designed for giant optical nonlinearity. Further studies describe that Cerenkov DFG scheme allows for extraction of THz radiation along the whole length of the laser waveguide and provides directional THz emission in 1.2-4.5 THz range. An important requirement for many applications, like chemical sensing and molecular spectroscopy, is single-mode emission. We demonstrate single-mode RT DFG THz QCLs operation in 1-5 THz region by employing devices as integrated dual-period DFB lasers, where efficient solid state RT sources do not exist.

Room Temperature Operation of a Buried Heterostructure Photonic Crystal Quantum Cascade Laser

Room Temperature Operation of a Buried Heterostructure Photonic Crystal Quantum Cascade Laser PDF Author: R. Peretti
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Fibre Optic Communication Devices

Fibre Optic Communication Devices PDF Author: Norbert Grote
Publisher: Springer Science & Business Media
ISBN: 9783540669777
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.

Optoelectronic Integrated Circuits

Optoelectronic Integrated Circuits PDF Author:
Publisher:
ISBN:
Category : Integrated circuits
Languages : en
Pages : 212

Get Book Here

Book Description


Integrated Optics Devices

Integrated Optics Devices PDF Author:
Publisher:
ISBN:
Category : Integrated optics
Languages : en
Pages : 496

Get Book Here

Book Description


Applied Nanophotonics

Applied Nanophotonics PDF Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 1107145503
Category : Science
Languages : en
Pages : 453

Get Book Here

Book Description
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Diffractive and Holographic Technologies for Integrated Photonic Systems

Diffractive and Holographic Technologies for Integrated Photonic Systems PDF Author: Richard Lee Sutherland
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description


Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics PDF Author: Peter W. Epperlein
Publisher: John Wiley & Sons
ISBN: 1118481860
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.

Vertical-cavity Surface-emitting Lasers

Vertical-cavity Surface-emitting Lasers PDF Author:
Publisher:
ISBN:
Category : Lasers
Languages : en
Pages : 280

Get Book Here

Book Description