Author: Basil Kouvaritakis
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
Model Predictive Control
Author: Basil Kouvaritakis
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
Control of Uncertain Systems
Author: Munther A. Dahleh
Publisher:
ISBN: 9780132806459
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
In tackling the problem of robust controller design from a unique perspective, this volume brings together three branches of mathematics: operator theory, optimization theory, and algebraic theory of rational matrix functions. Together, these techniques enable readers to capture the fundamental limitations of design in a quantitative way, and provide computable methods for analysis and synthesis of control systems. Content is presented rigorously -- with intuitive explanations of the results and examples that highlight the utility of those results.KEY TOPICS: Formulates general design problems that involve time-domain specification, and bounded, but persistent, disturbances. Surveys the background, problem definitions and set-up, parametrization of controllers and closed loop maps, and a general robustness set-up, all for MIMIO systems. Presents a very powerful theory in optimization -- duality theory. Explains the detailed solution of the synthesis problem -- with an emphasis is onl ...a performance and robustness. Includes many examples. For engineers involved in robust controller design.
Publisher:
ISBN: 9780132806459
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
In tackling the problem of robust controller design from a unique perspective, this volume brings together three branches of mathematics: operator theory, optimization theory, and algebraic theory of rational matrix functions. Together, these techniques enable readers to capture the fundamental limitations of design in a quantitative way, and provide computable methods for analysis and synthesis of control systems. Content is presented rigorously -- with intuitive explanations of the results and examples that highlight the utility of those results.KEY TOPICS: Formulates general design problems that involve time-domain specification, and bounded, but persistent, disturbances. Surveys the background, problem definitions and set-up, parametrization of controllers and closed loop maps, and a general robustness set-up, all for MIMIO systems. Presents a very powerful theory in optimization -- duality theory. Explains the detailed solution of the synthesis problem -- with an emphasis is onl ...a performance and robustness. Includes many examples. For engineers involved in robust controller design.
Assessment and Future Directions of Nonlinear Model Predictive Control
Author: Rolf Findeisen
Publisher: Springer
ISBN: 3540726993
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
Publisher: Springer
ISBN: 3540726993
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
Model Predictive Control
Author: Baocang Ding
Publisher: John Wiley & Sons
ISBN: 1119471311
Category : Science
Languages : en
Pages : 308
Book Description
Model Predictive Control Understand the practical side of controlling industrial processes Model Predictive Control (MPC) is a method for controlling a process according to given parameters, derived in many cases from empirical models. It has been widely applied in industrial units to increase revenue and promoting sustainability. Systematic overviews of this subject, however, are rare, and few draw on direct experience in industrial settings. Assuming basic knowledge of the relevant mathematical and algebraic modeling techniques, the book’s title combines foundational theories of MPC with a thorough sense of its practical applications in an industrial context. The result is a presentation uniquely suited to rapid incorporation in an industrial workplace. Model Predictive Control readers will also find: Two-part organization to balance theory and applications Selection of topics directly driven by industrial demand An author with decades of experience in both teaching and industrial practice This book is ideal for industrial control engineers and researchers looking to understand MPC technology, as well as advanced undergraduate and graduate students studying predictive control and related subjects.
Publisher: John Wiley & Sons
ISBN: 1119471311
Category : Science
Languages : en
Pages : 308
Book Description
Model Predictive Control Understand the practical side of controlling industrial processes Model Predictive Control (MPC) is a method for controlling a process according to given parameters, derived in many cases from empirical models. It has been widely applied in industrial units to increase revenue and promoting sustainability. Systematic overviews of this subject, however, are rare, and few draw on direct experience in industrial settings. Assuming basic knowledge of the relevant mathematical and algebraic modeling techniques, the book’s title combines foundational theories of MPC with a thorough sense of its practical applications in an industrial context. The result is a presentation uniquely suited to rapid incorporation in an industrial workplace. Model Predictive Control readers will also find: Two-part organization to balance theory and applications Selection of topics directly driven by industrial demand An author with decades of experience in both teaching and industrial practice This book is ideal for industrial control engineers and researchers looking to understand MPC technology, as well as advanced undergraduate and graduate students studying predictive control and related subjects.
Model Predictive Control in the Process Industry
Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Minimax Approaches to Robust Model Predictive Control
Author: Johan Löfberg
Publisher: Linköping University Electronic Press
ISBN: 9173736228
Category : Predictive control
Languages : en
Pages : 212
Book Description
Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.
Publisher: Linköping University Electronic Press
ISBN: 9173736228
Category : Predictive control
Languages : en
Pages : 212
Book Description
Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.
Predictive Control for Linear and Hybrid Systems
Author: Francesco Borrelli
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems
Author: Huiping Li
Publisher: Springer
ISBN: 3319482904
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel control algorithms and/or strategies, but also rigorously develops provably correct design conditions. It also provides concise, illustrative examples to demonstrate the implementation procedure, making it invaluable both for academic researchers and engineering practitioners.
Publisher: Springer
ISBN: 3319482904
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel control algorithms and/or strategies, but also rigorously develops provably correct design conditions. It also provides concise, illustrative examples to demonstrate the implementation procedure, making it invaluable both for academic researchers and engineering practitioners.
Robust Adaptive Control
Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.