Author:
Publisher: Academic Press
ISBN: 0080874460
Category : Mathematics
Languages : en
Pages : 569
Book Description
Ring Theory V1
Ring Theory V1
Author:
Publisher: Academic Press
ISBN: 0080874460
Category : Mathematics
Languages : en
Pages : 569
Book Description
Ring Theory V1
Publisher: Academic Press
ISBN: 0080874460
Category : Mathematics
Languages : en
Pages : 569
Book Description
Ring Theory V1
Methods in Ring Theory
Author: Freddy Van Oystaeyen
Publisher: Springer Science & Business Media
ISBN: 9400963696
Category : Mathematics
Languages : en
Pages : 569
Book Description
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983
Publisher: Springer Science & Business Media
ISBN: 9400963696
Category : Mathematics
Languages : en
Pages : 569
Book Description
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983
A Course in Ring Theory
Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
Ring Theory
Author:
Publisher: Academic Press
ISBN: 008087357X
Category : Mathematics
Languages : en
Pages : 333
Book Description
Ring Theory
Publisher: Academic Press
ISBN: 008087357X
Category : Mathematics
Languages : en
Pages : 333
Book Description
Ring Theory
Polynomial Identities in Ring Theory
Author:
Publisher: Academic Press
ISBN: 0080874002
Category : Mathematics
Languages : en
Pages : 387
Book Description
Polynomial Identities in Ring Theory
Publisher: Academic Press
ISBN: 0080874002
Category : Mathematics
Languages : en
Pages : 387
Book Description
Polynomial Identities in Ring Theory
Commutative Ring Theory
Author: Paul-Jean Cahen
Publisher: CRC Press
ISBN: 1000942740
Category : Mathematics
Languages : en
Pages : 273
Book Description
" Exploring commutative algebra's connections with and applications to topological algebra and algebraic geometry, Commutative Ring Theory covers the spectra of rings chain conditions, dimension theory, and Jaffard rings fiber products group rings, semigroup rings, and graded rings class groups linear groups integer-valued polynomials rings of finite fractions big Cohen-Macaulay modules and much more!"
Publisher: CRC Press
ISBN: 1000942740
Category : Mathematics
Languages : en
Pages : 273
Book Description
" Exploring commutative algebra's connections with and applications to topological algebra and algebraic geometry, Commutative Ring Theory covers the spectra of rings chain conditions, dimension theory, and Jaffard rings fiber products group rings, semigroup rings, and graded rings class groups linear groups integer-valued polynomials rings of finite fractions big Cohen-Macaulay modules and much more!"
Ring Theory
Author: Jose L. Bueso
Publisher: Springer
ISBN: 3540392785
Category : Mathematics
Languages : en
Pages : 343
Book Description
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
Publisher: Springer
ISBN: 3540392785
Category : Mathematics
Languages : en
Pages : 343
Book Description
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
Ring Theory and Its Applications
Author: Dinh Van Huynh
Publisher: American Mathematical Soc.
ISBN: 0821887971
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Publisher: American Mathematical Soc.
ISBN: 0821887971
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Exercises in Classical Ring Theory
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1475739877
Category : Mathematics
Languages : en
Pages : 299
Book Description
Based in large part on the comprehensive "First Course in Ring Theory" by the same author, this book provides a comprehensive set of problems and solutions in ring theory that will serve not only as a teaching aid to instructors using that book, but also for students, who will see how ring theory theorems are applied to solving ring-theoretic problems and how good proofs are written. The author demonstrates that problem-solving is a lively process: in "Comments" following many solutions he discusses what happens if a hypothesis is removed, whether the exercise can be further generalized, what would be a concrete example for the exercise, and so forth. The book is thus much more than a solution manual.
Publisher: Springer Science & Business Media
ISBN: 1475739877
Category : Mathematics
Languages : en
Pages : 299
Book Description
Based in large part on the comprehensive "First Course in Ring Theory" by the same author, this book provides a comprehensive set of problems and solutions in ring theory that will serve not only as a teaching aid to instructors using that book, but also for students, who will see how ring theory theorems are applied to solving ring-theoretic problems and how good proofs are written. The author demonstrates that problem-solving is a lively process: in "Comments" following many solutions he discusses what happens if a hypothesis is removed, whether the exercise can be further generalized, what would be a concrete example for the exercise, and so forth. The book is thus much more than a solution manual.
Foundations of Module and Ring Theory
Author: Robert Wisbauer
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.