Author: Carl Faith
Publisher: Springer Science & Business Media
ISBN: 3642653219
Category : Mathematics
Languages : en
Pages : 319
Book Description
Algebra II Ring Theory
Author: Carl Faith
Publisher: Springer Science & Business Media
ISBN: 3642653219
Category : Mathematics
Languages : en
Pages : 319
Book Description
Publisher: Springer Science & Business Media
ISBN: 3642653219
Category : Mathematics
Languages : en
Pages : 319
Book Description
Introduction to Ring Theory
Author: Paul M. Cohn
Publisher: Springer Science & Business Media
ISBN: 1447104757
Category : Mathematics
Languages : en
Pages : 234
Book Description
A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
Publisher: Springer Science & Business Media
ISBN: 1447104757
Category : Mathematics
Languages : en
Pages : 234
Book Description
A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.
A Course in Ring Theory
Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324
Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index
The Theory of Rings
Author: Nathan Jacobson
Publisher: American Mathematical Soc.
ISBN: 0821815024
Category : Mathematics
Languages : en
Pages : 160
Book Description
The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.
Publisher: American Mathematical Soc.
ISBN: 0821815024
Category : Mathematics
Languages : en
Pages : 160
Book Description
The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.
Rings of Quotients
Author: B. Stenström
Publisher: Springer Science & Business Media
ISBN: 3642660665
Category : Mathematics
Languages : en
Pages : 319
Book Description
The theory of rings of quotients has its origin in the work of (j). Ore and K. Asano on the construction of the total ring of fractions, in the 1930's and 40's. But the subject did not really develop until the end of the 1950's, when a number of important papers appeared (by R. E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where it is possible to make a systematic account of it (which is the purpose of this book). The most immediate example of a ring of quotients is the field of fractions Q of a commutative integral domain A. It may be characterized by the two properties: (i) For every qEQ there exists a non-zero SEA such that qSEA. (ii) Q is the maximal over-ring of A satisfying condition (i). The well-known construction of Q can be immediately extended to the case when A is an arbitrary commutative ring and S is a multiplicatively closed set of non-zero-divisors of A. In that case one defines the ring of fractions Q = A [S-l] as consisting of pairs (a, s) with aEA and SES, with the declaration that (a, s)=(b, t) if there exists UES such that uta = usb. The resulting ring Q satisfies (i), with the extra requirement that SES, and (ii).
Publisher: Springer Science & Business Media
ISBN: 3642660665
Category : Mathematics
Languages : en
Pages : 319
Book Description
The theory of rings of quotients has its origin in the work of (j). Ore and K. Asano on the construction of the total ring of fractions, in the 1930's and 40's. But the subject did not really develop until the end of the 1950's, when a number of important papers appeared (by R. E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where it is possible to make a systematic account of it (which is the purpose of this book). The most immediate example of a ring of quotients is the field of fractions Q of a commutative integral domain A. It may be characterized by the two properties: (i) For every qEQ there exists a non-zero SEA such that qSEA. (ii) Q is the maximal over-ring of A satisfying condition (i). The well-known construction of Q can be immediately extended to the case when A is an arbitrary commutative ring and S is a multiplicatively closed set of non-zero-divisors of A. In that case one defines the ring of fractions Q = A [S-l] as consisting of pairs (a, s) with aEA and SES, with the declaration that (a, s)=(b, t) if there exists UES such that uta = usb. The resulting ring Q satisfies (i), with the extra requirement that SES, and (ii).
Foundations of Module and Ring Theory
Author: Robert Wisbauer
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Fields and Rings
Author: Irving Kaplansky
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Undergraduate Commutative Algebra
Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
Publisher: Cambridge University Press
ISBN: 9780521458894
Category : Mathematics
Languages : en
Pages : 172
Book Description
Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Algebraic Methods in General Rough Sets
Author: A. Mani
Publisher: Springer
ISBN: 3030011623
Category : Mathematics
Languages : en
Pages : 740
Book Description
This unique collection of research papers offers a comprehensive and up-to-date guide to algebraic approaches to rough sets and reasoning with vagueness. It bridges important gaps, outlines intriguing future research directions, and connects algebraic approaches to rough sets with those for other forms of approximate reasoning. In addition, the book reworks algebraic approaches to axiomatic granularity. Given its scope, the book offers a valuable resource for researchers and teachers in the areas of rough sets and algebras of rough sets, algebraic logic, non classical logic, fuzzy sets, possibility theory, formal concept analysis, computational learning theory, category theory, and other formal approaches to vagueness and approximate reasoning. Consultants in AI and allied fields will also find the book to be of great practical value.
Publisher: Springer
ISBN: 3030011623
Category : Mathematics
Languages : en
Pages : 740
Book Description
This unique collection of research papers offers a comprehensive and up-to-date guide to algebraic approaches to rough sets and reasoning with vagueness. It bridges important gaps, outlines intriguing future research directions, and connects algebraic approaches to rough sets with those for other forms of approximate reasoning. In addition, the book reworks algebraic approaches to axiomatic granularity. Given its scope, the book offers a valuable resource for researchers and teachers in the areas of rough sets and algebras of rough sets, algebraic logic, non classical logic, fuzzy sets, possibility theory, formal concept analysis, computational learning theory, category theory, and other formal approaches to vagueness and approximate reasoning. Consultants in AI and allied fields will also find the book to be of great practical value.