Author: Hubert Hahn
Publisher: Springer Science & Business Media
ISBN: 3662048310
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Rigid Body Dynamics of Mechanisms
Author: Hubert Hahn
Publisher: Springer Science & Business Media
ISBN: 3662048310
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Publisher: Springer Science & Business Media
ISBN: 3662048310
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.
Rigid Body Dynamics of Mechanisms 2
Author: Hubert Hahn
Publisher: Springer Science & Business Media
ISBN: 9783540022374
Category : Computers
Languages : en
Pages : 700
Book Description
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Publisher: Springer Science & Business Media
ISBN: 9783540022374
Category : Computers
Languages : en
Pages : 700
Book Description
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Rigid Body Dynamics Algorithms
Author: Roy Featherstone
Publisher: Springer
ISBN: 1489975608
Category : Education
Languages : en
Pages : 276
Book Description
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.
Publisher: Springer
ISBN: 1489975608
Category : Education
Languages : en
Pages : 276
Book Description
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.
Rigid Body Dynamics of Mechanisms 2
Author: Hubert Hahn
Publisher: Springer Science & Business Media
ISBN: 3662097699
Category : Science
Languages : en
Pages : 674
Book Description
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Publisher: Springer Science & Business Media
ISBN: 3662097699
Category : Science
Languages : en
Pages : 674
Book Description
Intended for self-study, this second volume presents a systematic approach for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume. The focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, as well as active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. Its examples can be used as models for university lectures.
Rigid Body Kinematics
Author: Joaquim A. Batlle
Publisher: Cambridge University Press
ISBN: 1108479073
Category : Science
Languages : en
Pages : 297
Book Description
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1108479073
Category : Science
Languages : en
Pages : 297
Book Description
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
Dynamics of Machinery
Author: Hans Dresig
Publisher: Springer Science & Business Media
ISBN: 3540899405
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Dynamic loads and undesired oscillations increase with higher speed of machines. At the same time, industrial safety standards require better vibration reduction. This book covers model generation, parameter identification, balancing of mechanisms, torsional and bending vibrations, vibration isolation, and the dynamic behavior of drives and machine frames as complex systems. Typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks, resonances of higher order, nonlinear and self-excited vibrations are explained using practical examples. These include manipulators, flywheels, gears, mechanisms, motors, rotors, hammers, block foundations, presses, high speed spindles, cranes, and belts. Various design features, which influence the dynamic behavior, are described. The book includes 60 exercises with detailed solutions. The substantial benefit of this "Dynamics of Machinery" lies in the combination of theory and practical applications and the numerous descriptive examples based on real-world data. The book addresses graduate students as well as engineers.
Publisher: Springer Science & Business Media
ISBN: 3540899405
Category : Technology & Engineering
Languages : en
Pages : 553
Book Description
Dynamic loads and undesired oscillations increase with higher speed of machines. At the same time, industrial safety standards require better vibration reduction. This book covers model generation, parameter identification, balancing of mechanisms, torsional and bending vibrations, vibration isolation, and the dynamic behavior of drives and machine frames as complex systems. Typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks, resonances of higher order, nonlinear and self-excited vibrations are explained using practical examples. These include manipulators, flywheels, gears, mechanisms, motors, rotors, hammers, block foundations, presses, high speed spindles, cranes, and belts. Various design features, which influence the dynamic behavior, are described. The book includes 60 exercises with detailed solutions. The substantial benefit of this "Dynamics of Machinery" lies in the combination of theory and practical applications and the numerous descriptive examples based on real-world data. The book addresses graduate students as well as engineers.
Rigid Body Dynamics of Mechanisms: Theoretical basis
Author: Hubert Hahn
Publisher:
ISBN:
Category : Differential-algebraic equations
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Differential-algebraic equations
Languages : en
Pages : 0
Book Description
Dynamics of Particles and Rigid Bodies
Author: Mohammed F. Daqaq
Publisher: John Wiley & Sons
ISBN: 1119463181
Category : Science
Languages : en
Pages : 386
Book Description
A unique approach to teaching particle and rigid body dynamics using solved illustrative examples and exercises to encourage self-learning The study of particle and rigid body dynamics is a fundamental part of curricula for students pursuing graduate degrees in areas involving dynamics and control of systems. These include physics, robotics, nonlinear dynamics, aerospace, celestial mechanics and automotive engineering, among others. While the field of particle and rigid body dynamics has not evolved significantly over the past seven decades, neither have approaches to teaching this complex subject. This book fills the void in the academic literature by providing a uniquely stimulating, “flipped classroom” approach to teaching particle and rigid body dynamics which was developed, tested and refined by the author and his colleagues over the course of many years of instruction at both the graduate and undergraduate levels. Complete with numerous solved illustrative examples and exercises to encourage self-learning in a flipped-classroom environment, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach: Provides detailed, easy-to-understand explanations of concepts and mathematical derivations Includes numerous flipped-classroom exercises carefully designed to help students comprehend the material covered without actually solving the problem for them Features an extensive chapter on electromechanical modelling of systems involving particle and rigid body motion Provides examples from the state-of-the-art research on sensing, actuation, and energy harvesting mechanisms Offers access to a companion website featuring additional exercises, worked problems, diagrams and a solutions manual Ideal as a textbook for classes in dynamics and controls courses, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach is a godsend for students pursuing advanced engineering degrees who need to master this complex subject. It will also serve as a handy reference for professional engineers across an array of industrial domains.
Publisher: John Wiley & Sons
ISBN: 1119463181
Category : Science
Languages : en
Pages : 386
Book Description
A unique approach to teaching particle and rigid body dynamics using solved illustrative examples and exercises to encourage self-learning The study of particle and rigid body dynamics is a fundamental part of curricula for students pursuing graduate degrees in areas involving dynamics and control of systems. These include physics, robotics, nonlinear dynamics, aerospace, celestial mechanics and automotive engineering, among others. While the field of particle and rigid body dynamics has not evolved significantly over the past seven decades, neither have approaches to teaching this complex subject. This book fills the void in the academic literature by providing a uniquely stimulating, “flipped classroom” approach to teaching particle and rigid body dynamics which was developed, tested and refined by the author and his colleagues over the course of many years of instruction at both the graduate and undergraduate levels. Complete with numerous solved illustrative examples and exercises to encourage self-learning in a flipped-classroom environment, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach: Provides detailed, easy-to-understand explanations of concepts and mathematical derivations Includes numerous flipped-classroom exercises carefully designed to help students comprehend the material covered without actually solving the problem for them Features an extensive chapter on electromechanical modelling of systems involving particle and rigid body motion Provides examples from the state-of-the-art research on sensing, actuation, and energy harvesting mechanisms Offers access to a companion website featuring additional exercises, worked problems, diagrams and a solutions manual Ideal as a textbook for classes in dynamics and controls courses, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach is a godsend for students pursuing advanced engineering degrees who need to master this complex subject. It will also serve as a handy reference for professional engineers across an array of industrial domains.
Fundamentals of Dynamics and Analysis of Motion
Author: Marcelo R. M. Crespo da Silva
Publisher: Courier Dover Publications
ISBN: 0486797376
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
Suitable as both a reference and a text for graduate students, this book stresses the fundamentals of setting up and solving dynamics problems rather than the indiscriminate use of elaborate formulas. Includes tutorials on relevant software. 2015 edition.
Publisher: Courier Dover Publications
ISBN: 0486797376
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
Suitable as both a reference and a text for graduate students, this book stresses the fundamentals of setting up and solving dynamics problems rather than the indiscriminate use of elaborate formulas. Includes tutorials on relevant software. 2015 edition.
Dynamics of Parallel Robots
Author: Sébastien Briot
Publisher: Springer
ISBN: 3319197886
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.
Publisher: Springer
ISBN: 3319197886
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.