Review of Wave Energy Converter Power Take-Off Systems, Testing Practices, and Evaluation Metrics: Preprint

Review of Wave Energy Converter Power Take-Off Systems, Testing Practices, and Evaluation Metrics: Preprint PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
While the field of wave energy has been the subject of numerical simulation, scale model testing, and precommercial project testing for decades, wave energy technologies remain in the early stages of development and must continuing proving themselves as a promising modern renewable energy field. One of the difficulties that wave energy systems have been struggling to overcome is the design of highly efficient energy conversion systems that can convert the mechanical power, derived from the oscillation of wave activated bodies, into another useful product. Often the power take-off (PTO) is defined as the single unit responsible for converting mechanical power into another usable form such as electricity, pressurized fluid, compressed air, and others. The PTO, and the entire power conversion chain (PCC), is of great importance as it affects not only how efficient wave power is converted into electricity, but also contributes to the mass, size, structural dynamics, and levelized cost of energy (LCOE) of the wave energy converter (WEC). Unlike wind and solar, there is no industrial standard device, or devices, for wave energy conversion and this diversity is transferred to the PTO system. The majority of current WEC PTO systems incorporate a mechanical or hydraulic drive train, power generator, and an electrical control system. The challenge of WEC PTO designs is designing a mechanical-to-electrical component that can efficiently convert irregular, bi-directional, low frequency and low alternating velocity wave motions. While gross average power levels can be predicted in advance, the variable wave elevation input has to be converted into smooth electrical output and hence usually necessitates some type of energy storage system, such as battery storage, accumulator super capacitors, etc., or other means of compensation such as an array of devices. One of the primary challenges for wave energy converter systems is the fluctuating nature of wave resources, which require WEC components to be designed to handle loads (i.e. torques, forces, and powers) that are many times greater than the average load. This approach requires a much greater PTO capacity than the average power output and indicates a higher cost. In addition, supporting mechanical coupling and or gearing can be added to the PCC to help alleviate the difficulties with transmission and control of fluctuating large loads with low frequencies (indicative of wave forcing) into smaller loads at higher frequencies (optimum for conventional electrical machine design) can quickly increase the complexity of the PCC which could result in a greater number of failure modes and increased maintenance costs. All of the previous points demonstrate how the PTO influences WEC dynamics, reliability, performance and cost which are critical design factors. This paper further explores these topics by providing a review of the state-of-the-art PTO systems currently under development, how these novel PTO systems are tested and derisked prior to precommercial deployment, and the evaluation metrics historically used to differentiate between PTO designs and how they can be improved to support control co-design focused development of wave energy systems.

Review of Wave Energy Converter Power Take-Off Systems, Testing Practices, and Evaluation Metrics: Preprint

Review of Wave Energy Converter Power Take-Off Systems, Testing Practices, and Evaluation Metrics: Preprint PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
While the field of wave energy has been the subject of numerical simulation, scale model testing, and precommercial project testing for decades, wave energy technologies remain in the early stages of development and must continuing proving themselves as a promising modern renewable energy field. One of the difficulties that wave energy systems have been struggling to overcome is the design of highly efficient energy conversion systems that can convert the mechanical power, derived from the oscillation of wave activated bodies, into another useful product. Often the power take-off (PTO) is defined as the single unit responsible for converting mechanical power into another usable form such as electricity, pressurized fluid, compressed air, and others. The PTO, and the entire power conversion chain (PCC), is of great importance as it affects not only how efficient wave power is converted into electricity, but also contributes to the mass, size, structural dynamics, and levelized cost of energy (LCOE) of the wave energy converter (WEC). Unlike wind and solar, there is no industrial standard device, or devices, for wave energy conversion and this diversity is transferred to the PTO system. The majority of current WEC PTO systems incorporate a mechanical or hydraulic drive train, power generator, and an electrical control system. The challenge of WEC PTO designs is designing a mechanical-to-electrical component that can efficiently convert irregular, bi-directional, low frequency and low alternating velocity wave motions. While gross average power levels can be predicted in advance, the variable wave elevation input has to be converted into smooth electrical output and hence usually necessitates some type of energy storage system, such as battery storage, accumulator super capacitors, etc., or other means of compensation such as an array of devices. One of the primary challenges for wave energy converter systems is the fluctuating nature of wave resources, which require WEC components to be designed to handle loads (i.e. torques, forces, and powers) that are many times greater than the average load. This approach requires a much greater PTO capacity than the average power output and indicates a higher cost. In addition, supporting mechanical coupling and or gearing can be added to the PCC to help alleviate the difficulties with transmission and control of fluctuating large loads with low frequencies (indicative of wave forcing) into smaller loads at higher frequencies (optimum for conventional electrical machine design) can quickly increase the complexity of the PCC which could result in a greater number of failure modes and increased maintenance costs. All of the previous points demonstrate how the PTO influences WEC dynamics, reliability, performance and cost which are critical design factors. This paper further explores these topics by providing a review of the state-of-the-art PTO systems currently under development, how these novel PTO systems are tested and derisked prior to precommercial deployment, and the evaluation metrics historically used to differentiate between PTO designs and how they can be improved to support control co-design focused development of wave energy systems.

Wave Energy Power Take-Off Validation with a Hydraulicly Actuated Rotary Dynamometer and a Bidirectional High-Power DC Supply: Preprint

Wave Energy Power Take-Off Validation with a Hydraulicly Actuated Rotary Dynamometer and a Bidirectional High-Power DC Supply: Preprint PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
There are many organizations working towards the commercialization of wave energy converter technologies and are advancing their designs through the technology readiness levels (TRLs). A critical step before the field deployment of prototype wave energy converters is the validation of the subsystems and components that are contained in the wave energy converter through laboratory testing and performance characterization. In 2021, the National Renewable Energy Laboratory (NREL) developed and demonstrated a system for testing power takeoffs (PTO) with a low-speed, high-torque dynamometer and a grid-tied high-power DC power source and sink before field deployment. The hydraulic dynamometer allows for the simulation of PTO actuation from wave motion and is capable of a wide range of wave periods and heights which are represented as various speeds and torques from the dynamometer. The high-power bidirectional power supply allows for hardware in the loop and controller in the loop testing to be conducted on WEC power electronics. This presentation was made to describe the methods used by NREL research staff to test all components and sub-systems in the PTO of a novel wave energy converter before field deployment.

Evaluation of the Performance of a Taut-moored Dual-body Direct-drive Wave Energy Converter Through Numerical Modeling and Physical Testing

Evaluation of the Performance of a Taut-moored Dual-body Direct-drive Wave Energy Converter Through Numerical Modeling and Physical Testing PDF Author: David E. Elwood
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 196

Get Book Here

Book Description
With energy prices rising and increasing concern about the influence of fossil fuels on climate change, wave energy systems are on the verge of commercial implementation. These first generation wave energy converters utilize either pneumatics or hydraulics to convert the mechanical energy of waves into electricity. For the last several years, the wave energy research group at Oregon State University has focused on increasing the efficiency of wave energy conversion systems by developing direct drive power take-off systems. Beginning in the fall of 2006 an interdisciplinary team was tasked with designing and building a 1kW direct drive wave energy converter to be tested in the open ocean. Their device, the SeaBeavI, provided a proof of concept for a taught moored, dual body, wave energy conversion system using a linear generator for power take-off. To evaluate the performance of the SeBeavI system a method was developed to incorporate measured forces from the linear generator into a coupled model of the system. This thesis is comprised of one conference paper and two journal papers. The conference paper provides an overview of the design and construction of the SeaBeavI. The first journal paper presents an in-depth description of the physical testing and numerical modeling of the system. The second journal paper provides performance predictions for the device based on the combined numerical and experimental results.

Numerical Modelling of Wave Energy Converters

Numerical Modelling of Wave Energy Converters PDF Author: Matt Folley
Publisher: Academic Press
ISBN: 0128032111
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation

Modelling and Optimization of Wave Energy Converters

Modelling and Optimization of Wave Energy Converters PDF Author: Dezhi Ning
Publisher: CRC Press
ISBN: 1000629112
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Wave energy offers a promising renewable energy source, however, technologies converting wave energy into useful electricity face many design challenges. This guide presents numerical modelling and optimization methods for the development of wave energy converter technologies, from principles to applications. It covers the development status and perspectives of wave energy converter systems; the fundamental theories on wave power absorption; the modern wave energy converter concepts including oscillating bodies in single and multiple degree of freedom and oscillating water column technologies; and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at www.routledge.com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Ocean Wave Energy Conversion

Ocean Wave Energy Conversion PDF Author: Aurelien Babarit
Publisher: Elsevier
ISBN: 0081023901
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy

ELECTRICAL POWER TAKE-OFF SYSTEM DESIGN AND PERFORMANCE ASSESSMENT FOR POINT ABSORBER WAVE ENERGY CONVERTER

ELECTRICAL POWER TAKE-OFF SYSTEM DESIGN AND PERFORMANCE ASSESSMENT FOR POINT ABSORBER WAVE ENERGY CONVERTER PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : Wave energy has great potential but has a high levelized energy cost compared to other renewable energy sources (e.g., solar and wind). Improving the buoy control performance in the wave-to-wire energy conversion would be a straightforward way to increase the wave energy conversion efficiency and decrease the wave energy levelized cost. To improve the buoy control schemes design, the assessment of the state of the art controls and the study of the power take-off (PTO) power loss model are demanded. This dissertation starts with the basic dynamics of the wave energy converter (WEC) buoy and electrical PTO, introduces essential mechanics of the WEC wave-to-wire model composing. Furthermore, the details of the electrical machine control methodologies and the state-of-the-art buoy control schemes are included as well to generate the WEC wave-to-wire control frame. According to the wave-to-wire dynamic model, one fast evaluation methodology for energy extraction potential assessment is introduced. The sea-state-output-power matrices are generated while considering various electrical PTO effects and constraints to obtain electrical output power directly instead of relying on dynamic models propagation. Based upon the fast evaluation methodology, 16-years ground truth ocean wave data is analyzed for solving energy storage system (ESS) sizing problems for off-shore applications. To improve the ESS design reliability, the statistical study is applied as well. To further study the electrical PTO power loss model, the PTO dynamic model is implemented xxxi to the WEC buoy dynamic model. Several state-of-the-art WEC buoy control schemes are applied to the device and the performance is assessed. While considering the PTO copper losses, operation constraints, and the PTO nonlinear power loss model, the results show that the buoy control schemes will be affected significantly by the actual PTO dynamics. By studying the PTO operation efficiency, the possible solutions for improving the WEC energy extraction performance are provided. Designing the control for the wave-to-wire from a global point of view is demanded. So in the last chapter, the machine reinforcement learning (RL) control for the WEC wave-to-wire modeling is proposed, and the results are compared to other model-based controls, which turns out that the RL control can achieve much higher output power with better power qualities and it is robust for various wave conditions. According to the research results, a future study plan is discussed as well in the last.

Wave Energy Converters

Wave Energy Converters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Investigating the Impact of Power-take-off System Parameters and Control Law on a Rotational Wave Energy Converter's Peak-to-average Power Ratio Reduction

Investigating the Impact of Power-take-off System Parameters and Control Law on a Rotational Wave Energy Converter's Peak-to-average Power Ratio Reduction PDF Author: H. Bora Karayaka
Publisher:
ISBN:
Category : Direct energy conversion
Languages : en
Pages : 0

Get Book Here

Book Description


Design and Analysis for a Floating Oscillating Surge Wave Energy Converter

Design and Analysis for a Floating Oscillating Surge Wave Energy Converter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.