Review of the Oak Ridge National Laboratory (ORNL) Neutronic Calculations Regarding the Conversion of the High Flux Isotope Reactor (HFIR) to the Use of Low Enriched Uranium (LEU) Fuel

Review of the Oak Ridge National Laboratory (ORNL) Neutronic Calculations Regarding the Conversion of the High Flux Isotope Reactor (HFIR) to the Use of Low Enriched Uranium (LEU) Fuel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 472

Get Book Here

Book Description


SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR.

SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In response to on-going programs at Oak Ridge National Laboratory, two topics related to past operations of the High Flux Isotope Reactor (HFIR) are being reviewed and include determining whether HFIR fuel can be converted from high enriched uranium (HEU) to low enriched uranium (LEU) and determining whether HFIR beryllium reflectors are discharged as transuranic (TRU) waste. The LEU conversion and TRU waste studies are being performed in accordance with the Reduced Enrichment for Research and Test Reactors program and the Integrated Facility Disposition Project, respectively. While assessing data/analysis needs for LEU conversion such as the fuel cycle length and power needed to maintain the current level of reactor performance, a reduction of about 8% (~200 MWD) in the end-of-cycle exposure for HFIR fuel was observed over the lifetime of the reactor (43 years). The SCALE 6.0 computational system was used to evaluate discharged beryllium reflectors and it was discovered if the reflectors are procured according to the current HFIR standard, discharged reflectors would not be TRU waste, but the removable reflector (closest to core) would become TRU waste approximately 40 years after discharge. However, beryllium reflectors have been fabricated with a greater uranium content than that stipulated in the standard and these reflectors would be discharged as TRU waste.

ข้อมูลความจริงเกี่ยวกับยาแก้ปวดเกร็งสูตรผสม

ข้อมูลความจริงเกี่ยวกับยาแก้ปวดเกร็งสูตรผสม PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Studies of Past Operations at the High Flux Isotope Reactor

Studies of Past Operations at the High Flux Isotope Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

A Review of Proposed Upgrades to the High Flux Isotope Reactor and Potential Impacts to Reactor Vessel Integrity

A Review of Proposed Upgrades to the High Flux Isotope Reactor and Potential Impacts to Reactor Vessel Integrity PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was scheduled in October 2000 to implement design upgrades that include the enlargement of the HB-2 and HB-4 beam tubes. Higher dose rates and higher radiation embrittlement rates were predicted for the two beam-tube nozzles and surrounding vessel areas. ORNL had performed calculations for the upgraded design to show that vessel integrity would be maintained at acceptable levels. Pacific Northwest National Laboratory (PNNL) was requested by the U.S. Department of Energy Headquarters (DOE/HQ) to perform an independent peer review of the ORNL evaluations. PNNL concluded that the calculated probabilities of failure for the HFIR vessel during hydrostatic tests and for operational conditions as estimated by ORNL are an acceptable basis for selecting pressures and test intervals for hydrostatic tests and for justifying continued operation of the vessel. While there were some uncertainties in the embrittlement predictions, the ongoing efforts at ORNL to measure fluence levels at critical locations of the vessel wall and to test materials from surveillance capsules should be effective in dealing with embrittlement uncertainties. It was recommended that ORNL continue to update their fracture mechanics calculations to reflect methods and data from ongoing research for commercial nuclear power plants. Such programs should provide improved data for vessel fracture mechanics calculations.

Recent Studies Related to Past Operations at the High Flux Isotope Reactor

Recent Studies Related to Past Operations at the High Flux Isotope Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Congressional Record

Congressional Record PDF Author: United States. Congress
Publisher:
ISBN:
Category : Law
Languages : en
Pages : 1588

Get Book Here

Book Description


PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL? EXTENDING CYCLE BURNUP.

PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL? EXTENDING CYCLE BURNUP. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.