Responsible Implementations of Generative AI for Multidisciplinary Use

Responsible Implementations of Generative AI for Multidisciplinary Use PDF Author: Gaur, Loveleen
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Generative artificial intelligence (GAI) represents a profound leap in technological advancement, empowering machines to create content that closely mimics human creativity in various forms. As this technology continues to evolve and permeate multiple industries, it is essential to address the accompanying ethical considerations that arise from its use. Furthermore, there is a need for transparency in how GAI systems are developed and deployed to ensure that they are used responsibly and that their outputs are reliable and fair. Balancing innovation with ethical practices will be crucial to harnessing the benefits of GAI while mitigating its risks and ensuring its positive contribution to society. Responsible Implementations of Generative AI for Multidisciplinary Use highlights both the immense potential of GAI and the ethical challenges it presents. This book demystifies GAI by breaking down complex concepts into accessible language and offering real-world examples that illustrate the implications of its applications. Covering topics such as chatbots, ethical leadership, and the metaverse, this book is an excellent resource for technology professionals and developers, ethicists, policymakers, academicians, researchers, business leaders and executives, legal experts, students, educators, and more.

Responsible Implementations of Generative AI for Multidisciplinary Use

Responsible Implementations of Generative AI for Multidisciplinary Use PDF Author: Gaur, Loveleen
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Generative artificial intelligence (GAI) represents a profound leap in technological advancement, empowering machines to create content that closely mimics human creativity in various forms. As this technology continues to evolve and permeate multiple industries, it is essential to address the accompanying ethical considerations that arise from its use. Furthermore, there is a need for transparency in how GAI systems are developed and deployed to ensure that they are used responsibly and that their outputs are reliable and fair. Balancing innovation with ethical practices will be crucial to harnessing the benefits of GAI while mitigating its risks and ensuring its positive contribution to society. Responsible Implementations of Generative AI for Multidisciplinary Use highlights both the immense potential of GAI and the ethical challenges it presents. This book demystifies GAI by breaking down complex concepts into accessible language and offering real-world examples that illustrate the implications of its applications. Covering topics such as chatbots, ethical leadership, and the metaverse, this book is an excellent resource for technology professionals and developers, ethicists, policymakers, academicians, researchers, business leaders and executives, legal experts, students, educators, and more.

Responsible Implementations of Generative AI for Multidisciplinary Use

Responsible Implementations of Generative AI for Multidisciplinary Use PDF Author: Loveleen Gaur
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Generative artificial intelligence (GAI) represents a profound leap in technological advancement, empowering machines to create content that closely mimics human creativity in various forms. As this technology continues to evolve and permeate multiple industries, it is essential to address the accompanying ethical considerations that arise from its use. Furthermore, there is a need for transparency in how GAI systems are developed and deployed to ensure that they are used responsibly and that their outputs are reliable and fair. Balancing innovation with ethical practices will be crucial to harnessing the benefits of GAI while mitigating its risks and ensuring its positive contribution to society. Responsible Implementations of Generative AI for Multidisciplinary Use highlights both the immense potential of GAI and the ethical challenges it presents. This book demystifies GAI by breaking down complex concepts into accessible language and offering real-world examples that illustrate the implications of its applications. Covering topics such as chatbots, ethical leadership, and the metaverse, this book is an excellent resource for technology professionals and developers, ethicists, policymakers, academicians, researchers, business leaders and executives, legal experts, students, educators, and more.

Responsible AI in the Age of Generative Models

Responsible AI in the Age of Generative Models PDF Author: I. Almeida
Publisher: Now Next Later AI
ISBN: 0975642219
Category : Business & Economics
Languages : en
Pages : 302

Get Book Here

Book Description
In "Responsible AI in the Age of Generative Models: Governance, Ethics and Risk Management" we present a comprehensive guide to navigating the complex landscape of ethical AI development and deployment. As generative AI systems become increasingly powerful and ubiquitous, it is crucial to develop governance frameworks that mitigate potential risks while harnessing the technology's transformative potential. This book presents a rights-based approach, grounded in established human rights frameworks, to align AI systems with societal values and expectations. Divided into ten parts, the book covers a wide range of topics essential for responsible AI governance: Part I maps generative AI risks to specific human rights, while Part II presents a framework for institutionalizing rights-respecting AI practices throughout the development lifecycle. Part III delves into responsible data governance practices, and Part IV examines participatory approaches to data stewardship. Part V explores the roles and responsibilities of different organizational functions in operationalizing responsible AI, emphasizing the need for cross-functional collaboration. Transparency and algorithmic auditing are the focus of Part VI, followed by Part VII, which provides guidance on implementing effective multi-layered governance across the AI system lifecycle. Part VIII introduces maturity models for assessing an organization's responsible AI capabilities, and Part IX features an in-depth case study of Anthropic's innovative Constitutional AI approach. Finally, Part X analyzes emerging regulatory frameworks such as the EU AI Act and discusses the implications for businesses operating in multiple jurisdictions. "Responsible AI in the Age of Generative Models" equips readers with the knowledge, tools, and strategies needed to unlock the transformative potential of generative models while safeguarding human rights and promoting social justice. It is an essential resource for business leaders, policymakers, researchers, and anyone concerned about the future of AI governance. By embracing responsible AI as an imperative, we can work together to build a world where AI empowers and uplifts us all. This book is an invitation to engage in that critical conversation and take action towards a more equitable future.

Healthcare Industry Assessment: Analyzing Risks, Security, and Reliability

Healthcare Industry Assessment: Analyzing Risks, Security, and Reliability PDF Author: Pardeep Kumar
Publisher: Springer Nature
ISBN: 303165434X
Category :
Languages : en
Pages : 372

Get Book Here

Book Description


Responsible AI in the Enterprise

Responsible AI in the Enterprise PDF Author: Adnan Masood
Publisher: Packt Publishing Ltd
ISBN: 1803249668
Category : Computers
Languages : en
Pages : 318

Get Book Here

Book Description
Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn ethical AI principles, frameworks, and governance Understand the concepts of fairness assessment and bias mitigation Introduce explainable AI and transparency in your machine learning models Book DescriptionResponsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.What you will learn Understand explainable AI fundamentals, underlying methods, and techniques Explore model governance, including building explainable, auditable, and interpretable machine learning models Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction Build explainable models with global and local feature summary, and influence functions in practice Design and build explainable machine learning pipelines with transparency Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms Who this book is for This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Responsible Artificial Intelligence

Responsible Artificial Intelligence PDF Author: Virginia Dignum
Publisher: Springer Nature
ISBN: 3030303713
Category : Computers
Languages : en
Pages : 133

Get Book Here

Book Description
In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Integrating Generative AI in Education to Achieve Sustainable Development Goals

Integrating Generative AI in Education to Achieve Sustainable Development Goals PDF Author: Doshi, Ruchi
Publisher: IGI Global
ISBN:
Category : Education
Languages : en
Pages : 563

Get Book Here

Book Description
A new challenge has become present in the field of generative artificial intelligence (AI). The fundamental nature of education, a vital element for advancing the United Nations' Sustainable Development Goals (SDGs), now grapples with the transformative impact of AI technologies. As we stand at this intersection of progress and pedagogy, critical questions surface about the future roles of educators and the integrity of assessment processes. AI’s rapid progression prompts an exploration of the competencies our education systems must cultivate in a world where human and machine intelligence are becoming increasingly interconnected. Against this backdrop of transformative uncertainty, Integrating Generative AI in Education to Achieve Sustainable Development Goals addresses profound challenges and offers promising solutions at the crossroads of AI and education. This book assembles distinguished academics, researchers, and practitioners, forming a collective voice on the intersection of Generative AI and education. The three-part structure dissects the technical aspects of AI-powered innovations in educational design, explores multidisciplinary applications enhancing educational content, and highlights AI-driven solutions to address equality and inclusion concerns within educational systems. The book also underscores the importance of ethical considerations of generative AI to ensure a future where technology serves the broader goals of sustainability and equitable education.

Transforming Education With Generative AI: Prompt Engineering and Synthetic Content Creation

Transforming Education With Generative AI: Prompt Engineering and Synthetic Content Creation PDF Author: Sharma, Ramesh C.
Publisher: IGI Global
ISBN:
Category : Education
Languages : en
Pages : 570

Get Book Here

Book Description
The rise of generative Artificial Intelligence (AI) signifies a momentous stride in the evolution of Large Language Models (LLMs) within the expansive sphere of Natural Language Processing (NLP). This groundbreaking advancement ripples through numerous facets of our existence, with education, AI literacy, and curriculum enhancement emerging as focal points of transformation. Within the pages of Transforming Education With Generative AI: Prompt Engineering and Synthetic Content Creation, readers embark on a journey into the heart of this transformative phenomenon. Generative AI's influence extends deeply into education, touching the lives of educators, administrators, policymakers, and learners alike. Within the pages of this book, we explore the intricate art of prompt engineering, a skill that shapes the quality of AI-generated educational content. As generative AI becomes increasingly accessible, this comprehensive volume empowers its audience, by providing them with the knowledge needed to navigate and harness the potential of this powerful tool.

Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky

Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky PDF Author: Andrew M. Olney
Publisher: Springer Nature
ISBN: 3031643127
Category : Artificial intelligence
Languages : en
Pages : 532

Get Book Here

Book Description
Zusammenfassung: This volume constitutes poster papers and late breaking results presented during the 25th International Conference on Artificial Intelligence in Education, AIED 2024, which took place in Recife, Brazil, during July 8-12, 2024. The 18 full papers and 92 short papers were carefully reviewed and selected from 200 submissions. They are organized in topical sections as follows: Part One: Blue Sky, Industry, Innovation and Practitioner, WideAIED and Late-Breaking Results. Part Two: Late-Breaking Results, Doctoral Consortium, Workshops and Tutorials

Emerging Challenges in Intelligent Management Information Systems

Emerging Challenges in Intelligent Management Information Systems PDF Author: Marcin Hernes
Publisher: Springer Nature
ISBN: 3031667611
Category :
Languages : en
Pages : 352

Get Book Here

Book Description