Responsible AI in the Age of Generative Models

Responsible AI in the Age of Generative Models PDF Author: I. Almeida
Publisher: Now Next Later AI
ISBN: 0975642219
Category : Business & Economics
Languages : en
Pages : 302

Get Book Here

Book Description
In "Responsible AI in the Age of Generative Models: Governance, Ethics and Risk Management" we present a comprehensive guide to navigating the complex landscape of ethical AI development and deployment. As generative AI systems become increasingly powerful and ubiquitous, it is crucial to develop governance frameworks that mitigate potential risks while harnessing the technology's transformative potential. This book presents a rights-based approach, grounded in established human rights frameworks, to align AI systems with societal values and expectations. Divided into ten parts, the book covers a wide range of topics essential for responsible AI governance: Part I maps generative AI risks to specific human rights, while Part II presents a framework for institutionalizing rights-respecting AI practices throughout the development lifecycle. Part III delves into responsible data governance practices, and Part IV examines participatory approaches to data stewardship. Part V explores the roles and responsibilities of different organizational functions in operationalizing responsible AI, emphasizing the need for cross-functional collaboration. Transparency and algorithmic auditing are the focus of Part VI, followed by Part VII, which provides guidance on implementing effective multi-layered governance across the AI system lifecycle. Part VIII introduces maturity models for assessing an organization's responsible AI capabilities, and Part IX features an in-depth case study of Anthropic's innovative Constitutional AI approach. Finally, Part X analyzes emerging regulatory frameworks such as the EU AI Act and discusses the implications for businesses operating in multiple jurisdictions. "Responsible AI in the Age of Generative Models" equips readers with the knowledge, tools, and strategies needed to unlock the transformative potential of generative models while safeguarding human rights and promoting social justice. It is an essential resource for business leaders, policymakers, researchers, and anyone concerned about the future of AI governance. By embracing responsible AI as an imperative, we can work together to build a world where AI empowers and uplifts us all. This book is an invitation to engage in that critical conversation and take action towards a more equitable future.

Responsible AI in the Age of Generative Models

Responsible AI in the Age of Generative Models PDF Author: I. Almeida
Publisher: Now Next Later AI
ISBN: 0975642219
Category : Business & Economics
Languages : en
Pages : 302

Get Book Here

Book Description
In "Responsible AI in the Age of Generative Models: Governance, Ethics and Risk Management" we present a comprehensive guide to navigating the complex landscape of ethical AI development and deployment. As generative AI systems become increasingly powerful and ubiquitous, it is crucial to develop governance frameworks that mitigate potential risks while harnessing the technology's transformative potential. This book presents a rights-based approach, grounded in established human rights frameworks, to align AI systems with societal values and expectations. Divided into ten parts, the book covers a wide range of topics essential for responsible AI governance: Part I maps generative AI risks to specific human rights, while Part II presents a framework for institutionalizing rights-respecting AI practices throughout the development lifecycle. Part III delves into responsible data governance practices, and Part IV examines participatory approaches to data stewardship. Part V explores the roles and responsibilities of different organizational functions in operationalizing responsible AI, emphasizing the need for cross-functional collaboration. Transparency and algorithmic auditing are the focus of Part VI, followed by Part VII, which provides guidance on implementing effective multi-layered governance across the AI system lifecycle. Part VIII introduces maturity models for assessing an organization's responsible AI capabilities, and Part IX features an in-depth case study of Anthropic's innovative Constitutional AI approach. Finally, Part X analyzes emerging regulatory frameworks such as the EU AI Act and discusses the implications for businesses operating in multiple jurisdictions. "Responsible AI in the Age of Generative Models" equips readers with the knowledge, tools, and strategies needed to unlock the transformative potential of generative models while safeguarding human rights and promoting social justice. It is an essential resource for business leaders, policymakers, researchers, and anyone concerned about the future of AI governance. By embracing responsible AI as an imperative, we can work together to build a world where AI empowers and uplifts us all. This book is an invitation to engage in that critical conversation and take action towards a more equitable future.

DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED

DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED PDF Author: Siddharth Konkimalla
Publisher: BUDHA PUBLISHER
ISBN: 9361756079
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
.The advances in data engineering technologies, including big data infrastructure, knowledge graphs, and mechanism design, will have a long-lasting impact on artificial intelligence (AI) research and development. This paper introduces data engineering in AI with a focus on the basic concepts, applications, and emerging frontiers. As a new research field, most data engineering in AI is yet to be properly defined, and there are abundant problems and applications to be explored. The primary purpose of this paper is to expose the AI community to this shining star of data science, stimulate AI researchers to think differently and form a roadmap of data engineering for AI. Since this is primarily an informal essay rather than an academic paper, its coverage is limited. The vast majority of the stimulating studies and ongoing projects are not mentioned in the paper.

Trustworthy AI

Trustworthy AI PDF Author: Beena Ammanath
Publisher: John Wiley & Sons
ISBN: 1119867959
Category : Computers
Languages : en
Pages : 230

Get Book Here

Book Description
An essential resource on artificial intelligence ethics for business leaders In Trustworthy AI, award-winning executive Beena Ammanath offers a practical approach for enterprise leaders to manage business risk in a world where AI is everywhere by understanding the qualities of trustworthy AI and the essential considerations for its ethical use within the organization and in the marketplace. The author draws from her extensive experience across different industries and sectors in data, analytics and AI, the latest research and case studies, and the pressing questions and concerns business leaders have about the ethics of AI. Filled with deep insights and actionable steps for enabling trust across the entire AI lifecycle, the book presents: In-depth investigations of the key characteristics of trustworthy AI, including transparency, fairness, reliability, privacy, safety, robustness, and more A close look at the potential pitfalls, challenges, and stakeholder concerns that impact trust in AI application Best practices, mechanisms, and governance considerations for embedding AI ethics in business processes and decision making Written to inform executives, managers, and other business leaders, Trustworthy AI breaks new ground as an essential resource for all organizations using AI.

Responsible Artificial Intelligence

Responsible Artificial Intelligence PDF Author: Virginia Dignum
Publisher: Springer Nature
ISBN: 3030303713
Category : Computers
Languages : en
Pages : 133

Get Book Here

Book Description
In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Academic Integrity in the Age of Artificial Intelligence

Academic Integrity in the Age of Artificial Intelligence PDF Author: Mahmud, Saadia
Publisher: IGI Global
ISBN:
Category : Education
Languages : en
Pages : 373

Get Book Here

Book Description
Powerful generative Artificial Intelligence (AI) has defined and transformed our modern era, and the fundamental conceptualization of academia stands at a crossroads. Academic Integrity in the Age of Artificial Intelligence delves deep into the seismic shifts and intricate challenges brought forth by the proliferation of AI technologies, exploring the intricacies between innovation and integrity. The rise of generative AI, exemplified by ChatGPT, has set a cascade of change across diverse sectors, including higher education, medicine, and the arts. This book dissects the multifaceted impact of AI on the academic landscape. With AI's ability to craft text and imagery mirroring human creativity, the lines between authentic scholarship and synthetic deception blur. The book examines the delicate balance between productivity and ethics while weaving a comprehensive tapestry of insights from various stakeholders. From academics grappling with the definition of AI-assisted breaches of academic integrity to policymakers reshaping the future of higher education, this book engages a myriad of voices. It scrutinizes the nascent challenges in assessment design, the urgent need to update antiquated integrity policies, and the importance of research ethics in an AI-driven world. This book is ideal for educators, policymakers, students, and technologists through the complicated terrain of AI ethics.

Artificial Intelligence in the Age of Nanotechnology

Artificial Intelligence in the Age of Nanotechnology PDF Author: Jaber, Wassim
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
In the world of academia, scholars and researchers are confronted with a rapidly expanding knowledge base in Artificial Intelligence (AI) and nanotechnology. The integration of these two groundbreaking fields presents an intricate web of concepts, innovations, and interdisciplinary applications that can overwhelm even the most astute academic minds. Staying up to date with the latest developments and effectively navigating this complex terrain has become a pressing challenge for those striving to contribute meaningfully to these fields. Artificial Intelligence in the Age of Nanotechnology is a transformative solution meticulously crafted to address the academic community's knowledge gaps and challenges. This comprehensive book serves as the guiding light for scholars, researchers, and students grappling with the dynamic synergy between AI and Nanotechnology. It offers a structured and authoritative exploration of the core principles and transformative applications of these domains across diverse fields. By providing clarity and depth, it empowers academics to stay at the forefront of innovation and make informed contributions.

Organizing for Generative AI and the Productivity Revolution

Organizing for Generative AI and the Productivity Revolution PDF Author: Arthur J. O’Connor
Publisher: Springer Nature
ISBN:
Category :
Languages : en
Pages : 300

Get Book Here

Book Description


The Potential of Generative AI

The Potential of Generative AI PDF Author: Divit Gupta
Publisher: BPB Publications
ISBN: 935551672X
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
Unveiling the power and potential of Generative AI for a limitless future KEY FEATURES ● Holistic and accessible journey into Generative AI. ● Indispensable guide for unleashing Generative AI potential. ● Transforming technology, business, art, and innovation, covering technological advancements and business optimization. DESCRIPTION The Potential of Generative AI invites you for a captivating journey into the revolutionary technology, where machines become co-creators and the line between imagination and reality blurs. You will learn how AI helps doctors, engineers, and scientists solve real-world problems. Next, you will explore use cases where ChatGPT can boost productivity and enhance creativity. The book explores the journey from the origins of this revolutionary technology to its cutting-edge applications. Discover how generative models like GANs and VAEs work, and familiarize yourself with the impact they are making in fields like healthcare, finance, and art. Through real-world case studies and engaging examples, you will witness AI generating life-saving drugs, composing music, and even designing innovative products. This book explores the cutting-edge capabilities and potential of generative AI in the tech landscape. It will help you discover how generative AI can unlock new opportunities and enhance business operations. WHAT YOU WILL LEARN ● Learn about the different types of generative models, how they work, and their impact across various industries including healthcare, finance, and entertainment. ● Explore the creative potential of generative AI in art, music, and design. ● Develop Generative Adversarial Networks (GANs), with a focus on their architecture, training process, and real-world applications. ● Build and deploy generative models, ensuring readers to leverage this powerful technology. ● Perfect the art of generating text, images, music, and even code with AI, utilize your creative potential. WHO THIS BOOK IS FOR This book is for artists, programmers, musicians, designers, writers, researchers, entrepreneurs, scientists, Machine Learning practitioners and dreamers of all sorts. Generative AI awaits and is ready to transform your craft and empower your vision. TABLE OF CONTENTS 1. Introduction to Generative AI 2. Generative AI in Industries 3. Fundamentals of Generative Models 4. Applications Across Industries 5. Creative Expression with Generative AI 6. Generative AI in Business and Innovation 7. Deep Dive into GANs 8. Building and Deploying Generative Models

Platform and Model Design for Responsible AI

Platform and Model Design for Responsible AI PDF Author: Amita Kapoor
Publisher: Packt Publishing Ltd
ISBN: 1803249773
Category : Computers
Languages : en
Pages : 516

Get Book Here

Book Description
Craft ethical AI projects with privacy, fairness, and risk assessment features for scalable and distributed systems while maintaining explainability and sustainability Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn risk assessment for machine learning frameworks in a global landscape Discover patterns for next-generation AI ecosystems for successful product design Make explainable predictions for privacy and fairness-enabled ML training Book Description AI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it's necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you'll be able to make existing black box models transparent. You'll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You'll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you'll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You'll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics. By the end of this book, you'll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You'll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions. What you will learn Understand the threats and risks involved in ML models Discover varying levels of risk mitigation strategies and risk tiering tools Apply traditional and deep learning optimization techniques efficiently Build auditable and interpretable ML models and feature stores Understand the concept of uncertainty and explore model explainability tools Develop models for different clouds including AWS, Azure, and GCP Explore ML orchestration tools such as Kubeflow and Vertex AI Incorporate privacy and fairness in ML models from design to deployment Who this book is for This book is for experienced machine learning professionals looking to understand the risks and leakages of ML models and frameworks, and learn to develop and use reusable components to reduce effort and cost in setting up and maintaining the AI ecosystem.

Solutions Architect's Handbook

Solutions Architect's Handbook PDF Author: Saurabh Shrivastava
Publisher: Packt Publishing Ltd
ISBN: 1835084362
Category : Computers
Languages : en
Pages : 579

Get Book Here

Book Description
From fundamentals and design patterns to the latest techniques such as generative AI, machine learning and cloud native architecture, gain all you need to be a pro Solutions Architect crafting secure and reliable AWS architecture. Key Features Hits all the key areas -Rajesh Sheth, VP, Elastic Block Store, AWS Offers the knowledge you need to succeed in the evolving landscape of tech architecture - Luis Lopez Soria, Senior Specialist Solutions Architect, Google A valuable resource for enterprise strategists looking to build resilient applications - Cher Simon, Principal Solutions Architect, AWS Book DescriptionMaster the art of solution architecture and excel as a Solutions Architect with the Solutions Architect's Handbook. Authored by seasoned AWS technology leaders Saurabh Shrivastav and Neelanjali Srivastav, this book goes beyond traditional certification guides, offering in-depth insights and advanced techniques to meet the specific needs and challenges of solutions architects today. This edition introduces exciting new features that keep you at the forefront of this evolving field. Large language models, generative AI, and innovations in deep learning are cutting-edge advancements shaping the future of technology. Topics such as cloud-native architecture, data engineering architecture, cloud optimization, mainframe modernization, and building cost-efficient and secure architectures remain important in today's landscape. This book provides coverage of these emerging and key technologies and walks you through solution architecture design from key principles, providing you with the knowledge you need to succeed as a Solutions Architect. It will also level up your soft skills, providing career-accelerating techniques to help you get ahead. Unlock the potential of cutting-edge technologies, gain practical insights from real-world scenarios, and enhance your solution architecture skills with the Solutions Architect's Handbook.What you will learn Explore various roles of a solutions architect in the enterprise Apply design principles for high-performance, cost-effective solutions Choose the best strategies to secure your architectures and boost availability Develop a DevOps and CloudOps mindset for collaboration, operational efficiency, and streamlined production Apply machine learning, data engineering, LLMs, and generative AI for improved security and performance Modernize legacy systems into cloud-native architectures with proven real-world strategies Master key solutions architect soft skills Who this book is for This book is for software developers, system engineers, DevOps engineers, architects, and team leaders who already work in the IT industry and aspire to become solutions architect professionals. Solutions architects who want to expand their skillset or get a better understanding of new technologies will also learn valuable new skills. To get started, you'll need a good understanding of the real-world software development process and some awareness of cloud technology.