Author: Albert C J Luo
Publisher: World Scientific
ISBN: 9813231696
Category : Science
Languages : en
Pages : 251
Book Description
A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.
Resonance And Bifurcation To Chaos In Pendulum
Author: Albert C J Luo
Publisher: World Scientific
ISBN: 9813231696
Category : Science
Languages : en
Pages : 251
Book Description
A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.
Publisher: World Scientific
ISBN: 9813231696
Category : Science
Languages : en
Pages : 251
Book Description
A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.
Quasi-conservative Systems: Cycles, Resonances And Chaos
Author: Albert D Morozov
Publisher: World Scientific
ISBN: 9814498408
Category : Science
Languages : en
Pages : 339
Book Description
This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the “weakened” 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples.
Publisher: World Scientific
ISBN: 9814498408
Category : Science
Languages : en
Pages : 339
Book Description
This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the “weakened” 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples.
Nonlinearity, Bifurcation and Chaos
Author: Jan Awrejcewicz
Publisher: BoD – Books on Demand
ISBN: 9535108166
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinearity, Bifurcation and Chaos - Theory and Application is an edited book focused on introducing both theoretical and application oriented approaches in science and engineering. It contains 12 chapters, and is recommended for university teachers, scientists, researchers, engineers, as well as graduate and post-graduate students either working or interested in the field of nonlinearity, bifurcation and chaos.
Publisher: BoD – Books on Demand
ISBN: 9535108166
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinearity, Bifurcation and Chaos - Theory and Application is an edited book focused on introducing both theoretical and application oriented approaches in science and engineering. It contains 12 chapters, and is recommended for university teachers, scientists, researchers, engineers, as well as graduate and post-graduate students either working or interested in the field of nonlinearity, bifurcation and chaos.
Introduction To Nonlinear Dynamics For Physicists
Author: Henry D I Abarbanel
Publisher: World Scientific
ISBN: 9814504122
Category : Science
Languages : en
Pages : 170
Book Description
This series of lectures aims to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. What is nonlinear dynamics and how does it differ from linear dynamics which permeates all familiar textbooks? Why should the physicist study nonlinear systems and leave the comfortable territory of linearity? How can one progress in the study of nonlinear systems both in the analysis of these systems and in learning about new systems from observing their experimental behavior? While it is impossible to answer these questions in the finest detail, this series of lectures nonetheless successfully points the way for the interested reader. Other useful problems have also been incorporated as a study guide. By presenting both substantial qualitative information about phenomena in nonlinear systems and at the same time sufficient quantitative material, the author hopes that readers would learn how to progress on their own in the study of such similar material hereon.
Publisher: World Scientific
ISBN: 9814504122
Category : Science
Languages : en
Pages : 170
Book Description
This series of lectures aims to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. What is nonlinear dynamics and how does it differ from linear dynamics which permeates all familiar textbooks? Why should the physicist study nonlinear systems and leave the comfortable territory of linearity? How can one progress in the study of nonlinear systems both in the analysis of these systems and in learning about new systems from observing their experimental behavior? While it is impossible to answer these questions in the finest detail, this series of lectures nonetheless successfully points the way for the interested reader. Other useful problems have also been incorporated as a study guide. By presenting both substantial qualitative information about phenomena in nonlinear systems and at the same time sufficient quantitative material, the author hopes that readers would learn how to progress on their own in the study of such similar material hereon.
Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition
Author:
Publisher: ScholarlyEditions
ISBN: 1490107509
Category : Mathematics
Languages : en
Pages : 1039
Book Description
Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Approximation Theory. The editors have built Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Approximation Theory in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Publisher: ScholarlyEditions
ISBN: 1490107509
Category : Mathematics
Languages : en
Pages : 1039
Book Description
Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Approximation Theory. The editors have built Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Approximation Theory in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Bifurcation and Chaos
Author: Jan Awrejcewicz
Publisher: Springer Science & Business Media
ISBN: 3642793290
Category : Science
Languages : en
Pages : 281
Book Description
A collection of especially written articles describing the theory and application of nonlinear dynamics to a wide variety of problems encountered in physics and engineering. Each chapter is self-contained and includes an elementary introduction, an exposition of the state of the art, as well as details of recent theoretical, computational and experimental results. Included among the practical systems analysed are: hysteretic circuits, Josephson circuits, magnetic systems, railway dynamics, rotor dynamics and nonlinear dynamics of speech. This book provides important information and ideas for all mathematicians, physicists and engineers whose work in R & D or academia involves the practical consequences of chaotic dynamics.
Publisher: Springer Science & Business Media
ISBN: 3642793290
Category : Science
Languages : en
Pages : 281
Book Description
A collection of especially written articles describing the theory and application of nonlinear dynamics to a wide variety of problems encountered in physics and engineering. Each chapter is self-contained and includes an elementary introduction, an exposition of the state of the art, as well as details of recent theoretical, computational and experimental results. Included among the practical systems analysed are: hysteretic circuits, Josephson circuits, magnetic systems, railway dynamics, rotor dynamics and nonlinear dynamics of speech. This book provides important information and ideas for all mathematicians, physicists and engineers whose work in R & D or academia involves the practical consequences of chaotic dynamics.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Linear and Nonlinear Structural Mechanics
Author: Ali H. Nayfeh
Publisher: John Wiley & Sons
ISBN: 3527617574
Category : Science
Languages : en
Pages : 763
Book Description
* Explains the physical meaning of linear and nonlinear structural mechanics. * Shows how to perform nonlinear structural analysis. * Points out important nonlinear structural dynamics behaviors. * Provides ready-to-use governing equations.
Publisher: John Wiley & Sons
ISBN: 3527617574
Category : Science
Languages : en
Pages : 763
Book Description
* Explains the physical meaning of linear and nonlinear structural mechanics. * Shows how to perform nonlinear structural analysis. * Points out important nonlinear structural dynamics behaviors. * Provides ready-to-use governing equations.
Chaos, Bifurcations And Fractals Around Us: A Brief Introduction
Author: Wanda Szemplinska-stupnicka
Publisher: World Scientific
ISBN: 981448363X
Category : Technology & Engineering
Languages : en
Pages : 117
Book Description
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
Publisher: World Scientific
ISBN: 981448363X
Category : Technology & Engineering
Languages : en
Pages : 117
Book Description
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
Perturbation Theory
Author: Giuseppe Gaeta
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.