Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Singularities of Embedded Algebraic Surfaces PDF Author: Shreeram S. Abhyankar
Publisher: Springer Science & Business Media
ISBN: 3662035804
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Singularities of Embedded Algebraic Surfaces PDF Author: Shreeram S. Abhyankar
Publisher: Springer Science & Business Media
ISBN: 3662035804
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Singularities of Embedded Algebraic Surfaces PDF Author: Shreeram Shankar Abhyankar
Publisher:
ISBN: 9780120419562
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
This new edition describes the geometric part of the author's 1965 proof of desingularization of algebraic surfaces and solids in nonzero characteristic. The book also provides a self-contained introduction to birational algebraic geometry, based only on basic commutative algebra. In addition, it gives a short proof of analytic desingularization in characteristic zero for any dimension found in 1996 and based on a new avatar of an algorithmic trick employed in the original edition of the book. This new edition will inspire further progress in resolution of singularities of algebraic and arithmetical varieties which will be valuable for applications to algebraic geometry and number theory. The book can be used for a second year graduate course. The reference list has been updated.

Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Singularities of Embedded Algebraic Surfaces PDF Author:
Publisher: Academic Press
ISBN: 0080873367
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Resolution of Singularities of Embedded Algebraic Surfaces

Resolution of Surface Singularities

Resolution of Surface Singularities PDF Author: Vincent Cossart
Publisher:
ISBN:
Category : Geometry, Algebraic
Languages : en
Pages : 132

Get Book Here

Book Description


Resolution of Singularities

Resolution of Singularities PDF Author: Herwig Hauser
Publisher: Birkhäuser
ISBN: 3034883994
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.

Resolution of Surface Singularities

Resolution of Surface Singularities PDF Author: Vincent Cossart
Publisher: Springer
ISBN: 3540391258
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description


Lectures on Resolution of Singularities (AM-166)

Lectures on Resolution of Singularities (AM-166) PDF Author: János Kollár
Publisher: Princeton University Press
ISBN: 1400827809
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, János Kollár provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollár goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written in an informal yet lucid style, this book is aimed at readers who are interested in both the historical roots of the modern methods and in a simple and transparent proof of this important theorem.

The Resolution of Singular Algebraic Varieties

The Resolution of Singular Algebraic Varieties PDF Author: David Ellwood
Publisher: American Mathematical Soc.
ISBN: 0821889826
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Resolution of Singularities has long been considered as being a difficult to access area of mathematics. The more systematic and simpler proofs that have appeared in the last few years in zero characteristic now give us a much better understanding of singularities. They reveal the aesthetics of both the logical structure of the proof and the various methods used in it. The present volume is intended for readers who are not yet experts but always wondered about the intricacies of resolution. As such, it provides a gentle and quite comprehensive introduction to this amazing field. The book may tempt the reader to enter more deeply into a topic where many mysteries--especially the positive characteristic case--await to be disclosed. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Resolution of Curve and Surface Singularities in Characteristic Zero

Resolution of Curve and Surface Singularities in Characteristic Zero PDF Author: K. Kiyek
Publisher: Springer Science & Business Media
ISBN: 1402020295
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.

Singularities in Algebraic and Analytic Geometry

Singularities in Algebraic and Analytic Geometry PDF Author: Caroline Grant Melles
Publisher: American Mathematical Soc.
ISBN: 0821820052
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This volume contains the proceedings of an AMS special session held at the 1999 Joint Mathematics Meetings in San Antonio. The participants were an international group of researchers studying singularities from algebraic and analytic viewpoints. The contributed papers contain original results as well as some expository and historical material. This volume is dedicated to Oscar Zariski, on the one hundredth anniversary of his birth. Topics include the role of valuation theory in algebraic geometry with recent applications to the structure of morphisms; algorithmic approaches to resolution of equisingular surface singularities and locally toric varieties; weak subintegral closures of ideals and Rees valuations; constructions of universal weakly subintegral extensions of rings; direct-sum decompositions of finitely generated modules; construction and examples of resolution graphs of surface singularities; Jacobians of meromorphic curves; investigation of spectral numbers of curve singularities using Puiseux pairs; Gröbner basis calculations of Hochschild homology for hypersurfaces with isolated singularities; and the theory of characteristic classes of singular spaces - a brief history with conjectures and open problems.