Author: Dennis W. Sunal
Publisher: IAP
ISBN: 162396752X
Category : Education
Languages : en
Pages : 542
Book Description
Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http://nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform.
Discipline-Based Education Research
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309254140
Category : Education
Languages : en
Pages : 282
Book Description
The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.
Publisher: National Academies Press
ISBN: 0309254140
Category : Education
Languages : en
Pages : 282
Book Description
The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.
Reaching Students
Author: Nancy Kober
Publisher:
ISBN: 9780309300438
Category : Education
Languages : en
Pages : 0
Book Description
"Reaching Students presents the best thinking to date on teaching and learning undergraduate science and engineering. Focusing on the disciplines of astronomy, biology, chemistry, engineering, geosciences, and physics, this book is an introduction to strategies to try in your classroom or institution. Concrete examples and case studies illustrate how experienced instructors and leaders have applied evidence-based approaches to address student needs, encouraged the use of effective techniques within a department or an institution, and addressed the challenges that arose along the way."--Provided by publisher.
Publisher:
ISBN: 9780309300438
Category : Education
Languages : en
Pages : 0
Book Description
"Reaching Students presents the best thinking to date on teaching and learning undergraduate science and engineering. Focusing on the disciplines of astronomy, biology, chemistry, engineering, geosciences, and physics, this book is an introduction to strategies to try in your classroom or institution. Concrete examples and case studies illustrate how experienced instructors and leaders have applied evidence-based approaches to address student needs, encouraged the use of effective techniques within a department or an institution, and addressed the challenges that arose along the way."--Provided by publisher.
Teaching Undergraduate Science
Author: Linda C. Hodges
Publisher: Taylor & Francis
ISBN: 1000980340
Category : Education
Languages : en
Pages : 153
Book Description
This book is written for all science or engineering faculty who have ever found themselves baffled and frustrated by their undergraduate students’ lack of engagement and learning. The author, an experienced scientist, faculty member, and educational consultant, addresses these issues with the knowledge of faculty interests, constraints, and day-to-day concerns in mind. Drawing from the research on learning, she offers faculty new ways to think about the struggles their science students face. She then provides a range of evidence-based teaching strategies that can make the time faculty spend in the classroom more productive and satisfying.Linda Hodges reviews the various learning problems endemic to teaching science, explains why they are so common and persistent, and presents a digest of key ideas and strategies to address them, based on the research she has undertaken into the literature on the cognitive sciences and education. Recognizing that faculty have different views about teaching, different comfort levels with alternative teaching approaches, and are often pressed for time, Linda Hodges takes these constraints into account by first offering a framework for thinking purposefully about course design and teaching choices, and then providing a range of strategies to address very specific teaching barriers – whether it be students’ motivation, engagement in class, ability to problem solve, their reading comprehension, or laboratory, research or writing skills.Except for the first and last chapters, the other chapters in this book stand on their own (i.e., can be read in any order) and address a specific challenge students have in learning and doing science. Each chapter summarizes the research explaining why students struggle and concludes by offering several teaching options categorized by how easy or difficult they are to implement. Some, for example, can work in a large lecture class without a great expenditure of time; others may require more preparation and a more adventurous approach to teaching. Each strategy is accompanied by a table categorizing its likely impact, how much time it will take in class or out, and how difficult it will be to implement.Like scientific research, teaching works best when faculty start with a goal in mind, plan an approach building on the literature, use well-tested methodologies, and analyze results for future trials. Linda Hodges’ message is that with such intentional thought and a bit of effort faculty can succeed in helping many more students gain exciting new skills and abilities, whether those students are potential scientists or physicians or entrepreneurs. Her book serves as a mini compendium of current research as well as a protocol manual: a readily accessible guide to the literature, the best practices known to date, and a framework for thinking about teaching.
Publisher: Taylor & Francis
ISBN: 1000980340
Category : Education
Languages : en
Pages : 153
Book Description
This book is written for all science or engineering faculty who have ever found themselves baffled and frustrated by their undergraduate students’ lack of engagement and learning. The author, an experienced scientist, faculty member, and educational consultant, addresses these issues with the knowledge of faculty interests, constraints, and day-to-day concerns in mind. Drawing from the research on learning, she offers faculty new ways to think about the struggles their science students face. She then provides a range of evidence-based teaching strategies that can make the time faculty spend in the classroom more productive and satisfying.Linda Hodges reviews the various learning problems endemic to teaching science, explains why they are so common and persistent, and presents a digest of key ideas and strategies to address them, based on the research she has undertaken into the literature on the cognitive sciences and education. Recognizing that faculty have different views about teaching, different comfort levels with alternative teaching approaches, and are often pressed for time, Linda Hodges takes these constraints into account by first offering a framework for thinking purposefully about course design and teaching choices, and then providing a range of strategies to address very specific teaching barriers – whether it be students’ motivation, engagement in class, ability to problem solve, their reading comprehension, or laboratory, research or writing skills.Except for the first and last chapters, the other chapters in this book stand on their own (i.e., can be read in any order) and address a specific challenge students have in learning and doing science. Each chapter summarizes the research explaining why students struggle and concludes by offering several teaching options categorized by how easy or difficult they are to implement. Some, for example, can work in a large lecture class without a great expenditure of time; others may require more preparation and a more adventurous approach to teaching. Each strategy is accompanied by a table categorizing its likely impact, how much time it will take in class or out, and how difficult it will be to implement.Like scientific research, teaching works best when faculty start with a goal in mind, plan an approach building on the literature, use well-tested methodologies, and analyze results for future trials. Linda Hodges’ message is that with such intentional thought and a bit of effort faculty can succeed in helping many more students gain exciting new skills and abilities, whether those students are potential scientists or physicians or entrepreneurs. Her book serves as a mini compendium of current research as well as a protocol manual: a readily accessible guide to the literature, the best practices known to date, and a framework for thinking about teaching.
Research Based Undergraduate Science Teaching
Author: Dennis W. Sunal
Publisher: IAP
ISBN: 162396752X
Category : Education
Languages : en
Pages : 542
Book Description
Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http://nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform.
Publisher: IAP
ISBN: 162396752X
Category : Education
Languages : en
Pages : 542
Book Description
Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http://nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform.
Research Based Undergraduate Science Teaching
Author: Dennis W. Sunal
Publisher: Information Age Publishing
ISBN: 9781623967505
Category : Education
Languages : en
Pages : 542
Book Description
A volume in Research in Science Education Series Editors Dennis W. Sunal, University of Alabama and Emmett L. Wright, Kansas State University Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http: //nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform
Publisher: Information Age Publishing
ISBN: 9781623967505
Category : Education
Languages : en
Pages : 542
Book Description
A volume in Research in Science Education Series Editors Dennis W. Sunal, University of Alabama and Emmett L. Wright, Kansas State University Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http: //nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform
Handbook of Research on Science Teacher Education
Author: Julie A. Luft
Publisher: Routledge
ISBN: 1000568016
Category : Education
Languages : en
Pages : 663
Book Description
This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices. Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers. Issues associated with equity are embedded within each chapter. Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.
Publisher: Routledge
ISBN: 1000568016
Category : Education
Languages : en
Pages : 663
Book Description
This groundbreaking handbook offers a contemporary and thorough review of research relating directly to the preparation, induction, and career long professional learning of K–12 science teachers. Through critical and concise chapters, this volume provides essential insights into science teacher education that range from their learning as individuals to the programs that cultivate their knowledge and practices. Each chapter is a current review of research that depicts the area, and then points to empirically based conclusions or suggestions for science teacher educators or educational researchers. Issues associated with equity are embedded within each chapter. Drawing on the work of over one hundred contributors from across the globe, this handbook has 35 chapters that cover established, emergent, diverse, and pioneering areas of research, including: Research methods and methodologies in science teacher education, including discussions of the purpose of science teacher education research and equitable perspectives; Formal and informal teacher education programs that span from early childhood educators to the complexity of preparation, to the role of informal settings such as museums; Continuous professional learning of science teachers that supports building cultural responsiveness and teacher leadership; Core topics in science teacher education that focus on teacher knowledge, educative curricula, and working with all students; and Emerging areas in science teacher education such as STEM education, global education, and identity development. This comprehensive, in-depth text will be central to the work of science teacher educators, researchers in the field of science education, and all those who work closely with science teachers.
Science Teaching Essentials
Author: Cynthia J. Brame
Publisher: Academic Press
ISBN: 0128147032
Category : Science
Languages : en
Pages : 214
Book Description
Science Teaching Essentials: Short Guides to Good Practice serves as a reference manual for science faculty as they set up a new course, consider how to teach the course, figure out how to assess their students fairly and efficiently, and review and revise course materials. This book consists of a series of short chapters that instructors can use as resources to address common teaching problems and adopt evidence-based pedagogies. By providing individual chapters that can be used independently as needed, this book provides faculty with a just-in-time teaching resource they can use to draft a new syllabus. This is a must-have resource for science, health science and engineering faculty, as well as graduate students and post-docs preparing for future faculty careers. - Provides easily digested, practical, research-based information on how to teach - Allows faculty to efficiently get up-to-speed on a given pedagogy or assessment method - Addresses the full range of faculty experiences as they being to teach for the first time or want to reinvent how they teach
Publisher: Academic Press
ISBN: 0128147032
Category : Science
Languages : en
Pages : 214
Book Description
Science Teaching Essentials: Short Guides to Good Practice serves as a reference manual for science faculty as they set up a new course, consider how to teach the course, figure out how to assess their students fairly and efficiently, and review and revise course materials. This book consists of a series of short chapters that instructors can use as resources to address common teaching problems and adopt evidence-based pedagogies. By providing individual chapters that can be used independently as needed, this book provides faculty with a just-in-time teaching resource they can use to draft a new syllabus. This is a must-have resource for science, health science and engineering faculty, as well as graduate students and post-docs preparing for future faculty careers. - Provides easily digested, practical, research-based information on how to teach - Allows faculty to efficiently get up-to-speed on a given pedagogy or assessment method - Addresses the full range of faculty experiences as they being to teach for the first time or want to reinvent how they teach
Physics Teaching and Learning
Author: Dennis W. Sunal
Publisher: IAP
ISBN: 1641136588
Category : Science
Languages : en
Pages : 264
Book Description
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
Publisher: IAP
ISBN: 1641136588
Category : Science
Languages : en
Pages : 264
Book Description
Physics Teaching and Learning: Challenging the Paradigm, RISE Volume 8, focuses on research contributions challenging the basic assumptions, ways of thinking, and practices commonly accepted in physics education. Teaching physics involves multifaceted, research-based, value added strategies designed to improve academic engagement and depth of learning. In this volume, researchers, teaching and curriculum reformers, and reform implementers discuss a range of important issues. The volume should be considered as a first step in thinking through what physics teaching and physics learning might address in teacher preparation programs, in-service professional development programs, and in classrooms. To facilitate thinking about research-based physics teaching and learning each chapter in the volume was organized around five common elements: 1. A significant review of research in the issue or problem area. 2. Themes addressed are relevant for the teaching and learning of K-16 science 3. Discussion of original research by the author(s) addressing the major theme of the chapter. 4. Bridge gaps between theory and practice and/or research and practice. 5. Concerns and needs are addressed of school/community context stakeholders including students, teachers, parents, administrators, and community members.
Enhancing Professional Knowledge of Pre-Service Science Teacher Education by Self-Study Research
Author: Gayle A. Buck
Publisher: Springer
ISBN: 3319324470
Category : Science
Languages : en
Pages : 459
Book Description
Self-study research is making an impact on the field of science education. University researchers employ these methods to improve their instruction, develop as instructors, and ultimately, impact their students’ learning. This volume provides an introduction to self-study research in science education, followed by manuscripts of self-studies undertaken by university faculty and those becoming university faculty members in science teacher education. Chapter authors range from those new to the field to established researchers, highlighting the value of self-study research in science teacher education for every career rank. The fifteen self-studies provided in this book support and extend this contemporary work in science teacher education. They, and the subsequent reflections on professional knowledge, are organized into four sections: content courses for preservice teachers, elementary methods courses, secondary methods courses, and preparation of future teacher educators. Respondents from various locations around the globe share their reflections on these sections. A culminating reflection of the findings of these studies is provided at the end of the book that provides an overview of what we have learned from these chapters, as well as a reflection on the role of self-study research in the future of science teacher education.
Publisher: Springer
ISBN: 3319324470
Category : Science
Languages : en
Pages : 459
Book Description
Self-study research is making an impact on the field of science education. University researchers employ these methods to improve their instruction, develop as instructors, and ultimately, impact their students’ learning. This volume provides an introduction to self-study research in science education, followed by manuscripts of self-studies undertaken by university faculty and those becoming university faculty members in science teacher education. Chapter authors range from those new to the field to established researchers, highlighting the value of self-study research in science teacher education for every career rank. The fifteen self-studies provided in this book support and extend this contemporary work in science teacher education. They, and the subsequent reflections on professional knowledge, are organized into four sections: content courses for preservice teachers, elementary methods courses, secondary methods courses, and preparation of future teacher educators. Respondents from various locations around the globe share their reflections on these sections. A culminating reflection of the findings of these studies is provided at the end of the book that provides an overview of what we have learned from these chapters, as well as a reflection on the role of self-study research in the future of science teacher education.
The Science Teaching Efficacy Belief Instruments (STEBI A and B)
Author: James Deehan
Publisher: Springer
ISBN: 3319424653
Category : Science
Languages : en
Pages : 93
Book Description
The purpose of this Springer Brief is to provide a comprehensive review of both the STEBI methods and findings through the use of a clearly defined analytic framework. A systematic review of literature yielded 107 STEBI-A research items and 140 STEBI-B research items. The STEBI instruments have been used in a wide range of qualitative, cross sectional, longitudinal and experimental designs. Analysis of the findings of the papers reveals that in-service and pre-service programs that use innovative practices such as cooperative learning, inquiry based investigation and nature of science instruction can produce positive growth in participants’ science teaching efficacy beliefs. The personal science teaching efficacy beliefs of pre-service and in-service teachers showed greater mean scores and higher growth than their outcome expectancies. Implications are discussed.
Publisher: Springer
ISBN: 3319424653
Category : Science
Languages : en
Pages : 93
Book Description
The purpose of this Springer Brief is to provide a comprehensive review of both the STEBI methods and findings through the use of a clearly defined analytic framework. A systematic review of literature yielded 107 STEBI-A research items and 140 STEBI-B research items. The STEBI instruments have been used in a wide range of qualitative, cross sectional, longitudinal and experimental designs. Analysis of the findings of the papers reveals that in-service and pre-service programs that use innovative practices such as cooperative learning, inquiry based investigation and nature of science instruction can produce positive growth in participants’ science teaching efficacy beliefs. The personal science teaching efficacy beliefs of pre-service and in-service teachers showed greater mean scores and higher growth than their outcome expectancies. Implications are discussed.