Representations of Solvable Lie Groups and their Applications

Representations of Solvable Lie Groups and their Applications PDF Author: Didier Arnal
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.

Representations of Solvable Lie Groups and their Applications

Representations of Solvable Lie Groups and their Applications PDF Author: Didier Arnal
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Introduction to Lie Algebras and Representation Theory

Introduction to Lie Algebras and Representation Theory PDF Author: J.E. Humphreys
Publisher: Springer Science & Business Media
ISBN: 1461263980
Category : Mathematics
Languages : en
Pages : 189

Get Book Here

Book Description
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Lie Groups, Lie Algebras, and Some of Their Applications

Lie Groups, Lie Algebras, and Some of Their Applications PDF Author: Robert Gilmore
Publisher: Courier Corporation
ISBN: 0486131564
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry PDF Author: Robert Gilmore
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5

Get Book Here

Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Theory of Group Representations and Applications

Theory of Group Representations and Applications PDF Author: Asim Orhan Barut
Publisher: World Scientific
ISBN: 9789971502171
Category : Mathematics
Languages : en
Pages : 750

Get Book Here

Book Description
Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.

Galois' Theory Of Algebraic Equations (Second Edition)

Galois' Theory Of Algebraic Equations (Second Edition) PDF Author: Jean-pierre Tignol
Publisher: World Scientific Publishing Company
ISBN: 9814704717
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.

Classification and Identification of Lie Algebras

Classification and Identification of Lie Algebras PDF Author: Libor Šnobl
Publisher: American Mathematical Soc.
ISBN: 0821843559
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain classes of nilpotent and solvable Lie algebras of arbitrary finite dimensions for which complete or partial classification exists and discuss in detail their construction and properties. The book is based on material that was previously dispersed in journal articles, many of them written by one or both of the authors together with their collaborators. The reader of this book should be familiar with Lie algebra theory at an introductory level. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Representation Theory

Representation Theory PDF Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.

Introduction to Lie Algebras

Introduction to Lie Algebras PDF Author: K. Erdmann
Publisher: Springer Science & Business Media
ISBN: 1846284902
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.