Reports on Mathematical Logic

Reports on Mathematical Logic PDF Author:
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688

Get Book Here

Book Description

Reports on Mathematical Logic

Reports on Mathematical Logic PDF Author:
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688

Get Book Here

Book Description


Logic and Foundations of Mathematics

Logic and Foundations of Mathematics PDF Author: Andrea Cantini
Publisher: Springer Science & Business Media
ISBN: 9401721092
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies.

Hiroakira Ono on Substructural Logics

Hiroakira Ono on Substructural Logics PDF Author: Nikolaos Galatos
Publisher: Springer Nature
ISBN: 3030769208
Category : Philosophy
Languages : en
Pages : 382

Get Book Here

Book Description
This volume is dedicated to Hiroakira Ono life’s work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.

Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Residuated Lattices: An Algebraic Glimpse at Substructural Logics PDF Author: Nikolaos Galatos
Publisher: Elsevier
ISBN: 0080489648
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.

Theories of Types and Proofs

Theories of Types and Proofs PDF Author: Takahashi, Masako
Publisher:
ISBN:
Category : Applied mathematics
Languages : en
Pages : 314

Get Book Here

Book Description


Bulletin of the Section of Logic

Bulletin of the Section of Logic PDF Author:
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 402

Get Book Here

Book Description


Logic and Algebra

Logic and Algebra PDF Author: Aldo Ursini
Publisher: Routledge
ISBN: 1351434721
Category : Mathematics
Languages : en
Pages : 728

Get Book Here

Book Description
""Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s.

Problems and Exercises in Discrete Mathematics

Problems and Exercises in Discrete Mathematics PDF Author: G.P. Gavrilov
Publisher: Springer Science & Business Media
ISBN: 9401727708
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.

Proceedings in Print

Proceedings in Print PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 88

Get Book Here

Book Description


Abstracts of Papers Presented to the American Mathematical Society

Abstracts of Papers Presented to the American Mathematical Society PDF Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 658

Get Book Here

Book Description